Skip to main content

Sphericity and multiplication of double cosets for infinite-dimensional classical groups

Abstract

We construct spherical subgroups in infinite-dimensional classical groups G (usually they are not symmetric and their finite-dimensional analogs are not spherical). We present a structure of a semigroup on double cosets L\G/L for various subgroups L in G; these semigroups act in spaces of L-fixed vectors in unitary representations of G. We also obtain semigroup envelops of groups G generalizing constructions of operator colligations.

This is a preview of subscription content, access via your institution.

References

  1. A. Borodin and G. Olshanskii, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, ” Ann. of Math. (2), 161:3 (2005), 1319–1422.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Brion, “Classification des espaces homogènes sphériques, ” Compositio Math., 63:2 (1987), 189–208.

    MathSciNet  MATH  Google Scholar 

  3. M. S. Brodskii, “Unitary operator colligations and their characteristic functions, ” Uspekhi Mat. Nauk, 33:4(202) (1978), 141–168; English transl.: Russian Math. Surveys, 33:4 (1978), 159–191.

    MathSciNet  Google Scholar 

  4. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier Villars, Paris, 1964.

    Google Scholar 

  5. J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, vol. 96, Academic Press, New York-London, 1981.

    Google Scholar 

  6. I. M. Gelfand, “Spherical functions in symmetric Riemann spaces, ” Dokl. Akad. Nauk SSSR (N.S.), 70 (1950), 5–8; English transl.: Transl. Amer. Math. Soc., Ser. 2, 37 (1964), 39–43.

    Google Scholar 

  7. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol. 80, Academic Press, New York-London, 1978.

    Google Scholar 

  8. R. S. Ismagilov, “Elementary spherical functions on the groups SL(2, P) over a field P, which is not locally compact with respect to the subgroup of matrices with integral elements, ” Izv. AN SSSR, Ser. Mat., 31:2 (1967), 361–390; English transl.: Math. USSR-Izv., 1:2 (1967), 349–380.

    MathSciNet  Google Scholar 

  9. R. S. Ismagilov, “Spherical functions over a normed field whose residue field is infinite, ” Funkts. Anal. Prilozhen., 4:1 (1970), 42–51; English transl.: Functional Anal. Appl., 4:1 (1970), 37–45.

    MathSciNet  Google Scholar 

  10. F. Knop, “Semisymmetric polynomials and the invariant theory of matrix vector pairs, ” Represent. Theory, 5 (2001), 224–266.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups, ” in: Special Functions: Group Theoretical Aspects and Applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85.

    Google Scholar 

  12. M. Krämer, “Sphärische Untergruppen in kompakten zusammenheängenden Liegruppen, ” Compositio Math., 38:2 (1979), 129–153.

    MathSciNet  MATH  Google Scholar 

  13. M. S. Livshits, “On a certain class of linear operators in Hilbert space, ” Mat. Sb., 19(61):2 (1946), 239–262; English transl.: Amer. Math. Soc. Transl. (Ser. 2), 13 (1960), 61–83.

    Google Scholar 

  14. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed. With contributions by A. Zelevinsky, Clarendon Press, Oxford Univ. Press, New York, 1995.

    MATH  Google Scholar 

  15. I. V. Mikityuk, “On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, ” Mat. Sb., 129:4 (1986), 514–534; English transl.: Math. USSR-Sb., 57 (1987), 527–546.

    MathSciNet  Google Scholar 

  16. Yu. A. Neretin, “Categories of bistochastic measures and representations of some infinitedimensional groups, ” Mat. Sb., 183:2 (1992), 52–76; English transl.: Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219.

    MATH  Google Scholar 

  17. Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Clarendon Press, Oxford University Press, New York, 1996.

    MATH  Google Scholar 

  18. Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups, ” Duke Math. J., 114:2 (2002), 239–266.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories, ” Int. Math. Res. Notices, 2011, doi: 10.1093/imrn/rnr027; http://arxiv.org/abs/0909.4739.

  20. Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions, ” Anal. Math. Phys., 1 (2011), doi: 10.1007/s13324-011-0009-y; http://arxiv.org/abs/1006.2275.

  21. N. I. Nessonov, “Factor-representation of the group GL() and admissible representations GL()X, ” Mat. Fiz. Anal. Geom. (Kharkov Math. J.), 10:4 (2003), 167–187.

    MATH  Google Scholar 

  22. N. I. Nessonov, “Factor-representation of the group GL() and admissible representations of GL()X. II, ” Mat. Fiz. Anal. Geom. (Kharkov Math. J.), 10:4 (2003), 524–556.

    MathSciNet  MATH  Google Scholar 

  23. G. I. Ol’shanskii, “New “large” groups of type I, ” in: Itogi Nauki i Tekhniki, Sovrem. Probl. Matem., vol. 16, VINITI, Moscow, 1980, 31–52; English transl.: J. Sov. Math., 18 (1982), 22–39.

    Google Scholar 

  24. G. I. Olshanskii, “Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe, ” Dokl. AN SSSR, 269:1 (1983), 33–36; English transl.: Soviet Math. Dokl., 27:2 (1983), 290–294.

    MathSciNet  Google Scholar 

  25. G. I. Ol’shanskii, “Infinite-dimensional groups of finite R-rank: description of representations and asymptotic theory, ” Funkts. Anal. Prilozhen., 18:1 (1984), 28–42; English transl.: Functional Anal. Appl., 18:1 (1984), 22–34.

    MathSciNet  Google Scholar 

  26. G. I. Ol’shanskii, “Unitary representations of the group SO0(∞, ∞) as limits of unitary representations of the groups SO0(n, ∞) as n→∞, ” Funkts. Anal. Prilozhen., 20:4 (1986), 46–57; English transl.: Functional Anal. Appl., 20:4 (1986), 292–301.

    MathSciNet  Google Scholar 

  27. G. I. Ol’shanskii, “The method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups, ” Funkts. Anal. Prilozhen., 22:4 (1988), 23–37; English transl.: Functional Anal. Appl., 22:4 (1988), 273–285.

    MathSciNet  Google Scholar 

  28. G. I. Olshanskii, “Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe, ” in: Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., vol. 7, Gordon and Breach, New York, 1990, 269–463.

    Google Scholar 

  29. G. I. Olshanskii, “Unitary representations of (G, K)-pairs connected with the infinite symmetric group S(), ” Algebra i Analiz, 1:4 (1989), 178–209; English transl.: Leningr. Math. J., 1:4 (1990), 983–1014.

    MathSciNet  Google Scholar 

  30. G. I. Olshanskii, “Caractères généralisés du groupe U() et fonctions intérieures, ” C. R. Acad. Sci. Paris. Sér. 1, 313:1 (1991), 9–12.

    MathSciNet  Google Scholar 

  31. G. I. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group, ” J. Funct. Anal., 205:2 (2003), 464–524.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces, ” J. Funct. Anal., 90:1 (1990), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. P. Potapov, “The multiplicative structure of J-contractive matrix functions, ” Trudy Moskov. Mat. Obsch., 4 (1955), 125–236; English transl.: Amer. Math. Soc. Transl. (2), 15 (1960), 131-243.

    MathSciNet  MATH  Google Scholar 

  34. S. Strǎtilǎ and D. Voiculescu, Representations of AF-Algebras and of the Group U(), Lecture Notes in Math., vol. 486, Springer-Verlag, New York-Heidelberg-Paris, 1975.

    Google Scholar 

  35. A. M. Vershik and S. V. Kerov, “Characters and factor-representations of the infinite unitary group, ” Dokl. Akad. Nauk SSSR, 267:2 (1982), 272–276; English transl.: Soviet Math. Dokl., 26 (1983), 570–574.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Neretin.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 45, No. 3, pp. 79–96, 2011

Original Russian Text Copyright © by Yu. A. Neretin

To the memory of V. I. Arnold

Supported by FWF grant no. P22122.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neretin, Y.A. Sphericity and multiplication of double cosets for infinite-dimensional classical groups. Funct Anal Its Appl 45, 225–239 (2011). https://doi.org/10.1007/s10688-011-0025-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-011-0025-6

Key words