Abstract
We construct spherical subgroups in infinite-dimensional classical groups G (usually they are not symmetric and their finite-dimensional analogs are not spherical). We present a structure of a semigroup on double cosets L\G/L for various subgroups L in G; these semigroups act in spaces of L-fixed vectors in unitary representations of G. We also obtain semigroup envelops of groups G generalizing constructions of operator colligations.
This is a preview of subscription content, access via your institution.
References
A. Borodin and G. Olshanskii, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, ” Ann. of Math. (2), 161:3 (2005), 1319–1422.
M. Brion, “Classification des espaces homogènes sphériques, ” Compositio Math., 63:2 (1987), 189–208.
M. S. Brodskii, “Unitary operator colligations and their characteristic functions, ” Uspekhi Mat. Nauk, 33:4(202) (1978), 141–168; English transl.: Russian Math. Surveys, 33:4 (1978), 159–191.
J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier Villars, Paris, 1964.
J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, vol. 96, Academic Press, New York-London, 1981.
I. M. Gelfand, “Spherical functions in symmetric Riemann spaces, ” Dokl. Akad. Nauk SSSR (N.S.), 70 (1950), 5–8; English transl.: Transl. Amer. Math. Soc., Ser. 2, 37 (1964), 39–43.
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol. 80, Academic Press, New York-London, 1978.
R. S. Ismagilov, “Elementary spherical functions on the groups SL(2, P) over a field P, which is not locally compact with respect to the subgroup of matrices with integral elements, ” Izv. AN SSSR, Ser. Mat., 31:2 (1967), 361–390; English transl.: Math. USSR-Izv., 1:2 (1967), 349–380.
R. S. Ismagilov, “Spherical functions over a normed field whose residue field is infinite, ” Funkts. Anal. Prilozhen., 4:1 (1970), 42–51; English transl.: Functional Anal. Appl., 4:1 (1970), 37–45.
F. Knop, “Semisymmetric polynomials and the invariant theory of matrix vector pairs, ” Represent. Theory, 5 (2001), 224–266.
T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups, ” in: Special Functions: Group Theoretical Aspects and Applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85.
M. Krämer, “Sphärische Untergruppen in kompakten zusammenheängenden Liegruppen, ” Compositio Math., 38:2 (1979), 129–153.
M. S. Livshits, “On a certain class of linear operators in Hilbert space, ” Mat. Sb., 19(61):2 (1946), 239–262; English transl.: Amer. Math. Soc. Transl. (Ser. 2), 13 (1960), 61–83.
I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed. With contributions by A. Zelevinsky, Clarendon Press, Oxford Univ. Press, New York, 1995.
I. V. Mikityuk, “On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, ” Mat. Sb., 129:4 (1986), 514–534; English transl.: Math. USSR-Sb., 57 (1987), 527–546.
Yu. A. Neretin, “Categories of bistochastic measures and representations of some infinitedimensional groups, ” Mat. Sb., 183:2 (1992), 52–76; English transl.: Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219.
Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Clarendon Press, Oxford University Press, New York, 1996.
Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups, ” Duke Math. J., 114:2 (2002), 239–266.
Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories, ” Int. Math. Res. Notices, 2011, doi: 10.1093/imrn/rnr027; http://arxiv.org/abs/0909.4739.
Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions, ” Anal. Math. Phys., 1 (2011), doi: 10.1007/s13324-011-0009-y; http://arxiv.org/abs/1006.2275.
N. I. Nessonov, “Factor-representation of the group GL(∞) and admissible representations GL(∞)X, ” Mat. Fiz. Anal. Geom. (Kharkov Math. J.), 10:4 (2003), 167–187.
N. I. Nessonov, “Factor-representation of the group GL(∞) and admissible representations of GL(∞)X. II, ” Mat. Fiz. Anal. Geom. (Kharkov Math. J.), 10:4 (2003), 524–556.
G. I. Ol’shanskii, “New “large” groups of type I, ” in: Itogi Nauki i Tekhniki, Sovrem. Probl. Matem., vol. 16, VINITI, Moscow, 1980, 31–52; English transl.: J. Sov. Math., 18 (1982), 22–39.
G. I. Olshanskii, “Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe, ” Dokl. AN SSSR, 269:1 (1983), 33–36; English transl.: Soviet Math. Dokl., 27:2 (1983), 290–294.
G. I. Ol’shanskii, “Infinite-dimensional groups of finite R-rank: description of representations and asymptotic theory, ” Funkts. Anal. Prilozhen., 18:1 (1984), 28–42; English transl.: Functional Anal. Appl., 18:1 (1984), 22–34.
G. I. Ol’shanskii, “Unitary representations of the group SO0(∞, ∞) as limits of unitary representations of the groups SO0(n, ∞) as n→∞, ” Funkts. Anal. Prilozhen., 20:4 (1986), 46–57; English transl.: Functional Anal. Appl., 20:4 (1986), 292–301.
G. I. Ol’shanskii, “The method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups, ” Funkts. Anal. Prilozhen., 22:4 (1988), 23–37; English transl.: Functional Anal. Appl., 22:4 (1988), 273–285.
G. I. Olshanskii, “Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe, ” in: Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., vol. 7, Gordon and Breach, New York, 1990, 269–463.
G. I. Olshanskii, “Unitary representations of (G, K)-pairs connected with the infinite symmetric group S(∞), ” Algebra i Analiz, 1:4 (1989), 178–209; English transl.: Leningr. Math. J., 1:4 (1990), 983–1014.
G. I. Olshanskii, “Caractères généralisés du groupe U(∞) et fonctions intérieures, ” C. R. Acad. Sci. Paris. Sér. 1, 313:1 (1991), 9–12.
G. I. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group, ” J. Funct. Anal., 205:2 (2003), 464–524.
D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces, ” J. Funct. Anal., 90:1 (1990), 1–26.
V. P. Potapov, “The multiplicative structure of J-contractive matrix functions, ” Trudy Moskov. Mat. Obsch., 4 (1955), 125–236; English transl.: Amer. Math. Soc. Transl. (2), 15 (1960), 131-243.
S. Strǎtilǎ and D. Voiculescu, Representations of AF-Algebras and of the Group U(∞), Lecture Notes in Math., vol. 486, Springer-Verlag, New York-Heidelberg-Paris, 1975.
A. M. Vershik and S. V. Kerov, “Characters and factor-representations of the infinite unitary group, ” Dokl. Akad. Nauk SSSR, 267:2 (1982), 272–276; English transl.: Soviet Math. Dokl., 26 (1983), 570–574.
Author information
Authors and Affiliations
Corresponding author
Additional information
__________
Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 45, No. 3, pp. 79–96, 2011
Original Russian Text Copyright © by Yu. A. Neretin
To the memory of V. I. Arnold
Supported by FWF grant no. P22122.
Rights and permissions
About this article
Cite this article
Neretin, Y.A. Sphericity and multiplication of double cosets for infinite-dimensional classical groups. Funct Anal Its Appl 45, 225–239 (2011). https://doi.org/10.1007/s10688-011-0025-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10688-011-0025-6