Skip to main content
Log in

Sharp conditions of global existence for the quasilinear Schrödinger equation

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

The paper discusses a class of quasilinear Schrödinger equations describing the upper-hybrid oscillation propagation. By establishing a cross-constrained variational problem and a so-called invariant flow, we obtain a sharp condition for blow-up and global existence of solutions of the Cauchy problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kurihura, “Large-amplitude quasi-solitons in superfluid films,” J. Phys. Soc. Japan, 50 (1981), 3262–3267.

    Article  Google Scholar 

  2. H. Lange, M. Poppenberg, and H. Teismann, “Nash-Moser methods for the solution of quasilinear Schrödinger equations,” Comm. Partial Differential Equations, 24 (1999), 1399–1418.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. W. Laedke, K. H. Spatschek, and L. Stenflo, “Evolution theorem for a class of perturbed envelope soliton solutions,” J. Math. Phys., 24 (1983), 2764–2769.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. V. Borovskii and A. L. Galkin, “Dynamical modulation of an ultrashort high-intensity laser pulse in matter,” ZhETF, 104:10 (1993), 3311–3333; English transl.: Sov. Phys. JETP, 77 (1993), 562–573.

    Google Scholar 

  5. H. S. Brandi, C. Manus, G. Mainfray, T. Lehner, and G. Bonnaud, “Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,” Phys. Fluids B, 5 (1993), 3539–3550.

    Article  Google Scholar 

  6. X. L. Chen and R. N. Sudan, “Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse,” Phys. Rev. Lett., 70 (1993), 2082–2085.

    Article  Google Scholar 

  7. B. Ritchie, “Relativistic self-focusing and channel formation in laser-plasma interactions,” Phys. Rev. E, 50 (1994), 687–689.

    Article  Google Scholar 

  8. A. De Bouard, N. Hayashi, and J. C. Saut, “Global existence of small solutions to a relativistic nonlinear Schrödinger equation,” Comm. Math. Phys., 189 (1997), 73–105.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. G. Litvak and A. M. Sergeev, “One dimensional collapse of plasma waves,” Pis’ma v ZhETF, 27:10 (1978), 549–553; English transl.: JETP Lett., 27 (1978), 517–520.

    Google Scholar 

  10. A. Nakamura, “Damping and modification of exciton solitary waves,” J. Phys. Soc. Japan, 42 (1977), 1824–1835.

    Article  Google Scholar 

  11. M. Porkolab and M. V. Goddman, “Upper-hybrid solitons and oscillating two-stream instabilities,” Phys. Fluids, 19 (1976), 872–881.

    Article  MathSciNet  Google Scholar 

  12. F. G. Bass and N. N. Nasanov, “Nonlinear electromagnetic spin waves,” Phys. Rep., 189 (1990), 165–223.

    Article  Google Scholar 

  13. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, “Magnetic solitons,” Phys. Rep., 194 (1990), 117–238.

    Article  Google Scholar 

  14. H. Lange, B. Toomire, and P. E. Zweifel, “Time-dependent dissipation in nonlinear Schrödinger systems,” J. Math. Phys., 36 (1995), 1274–1283.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. R. W. Quispel and H. W. Capel, “Equation of motion for the Heisenberg spin chain,” Physica A, 110 (1982), 41–80.

    Article  MathSciNet  Google Scholar 

  16. S. Takeno and S. Homma, “Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations,” Progr. Theoret. Phys., 65 (1981), 172–189.

    Article  MathSciNet  Google Scholar 

  17. R. W. Hasse, “A general method for the solution of nonlinear soliton and kink Schrödinger equations,” Z. Phys. B, 37 (1980), 83–87.

    Article  MathSciNet  Google Scholar 

  18. V. G. Makhankov and V. K. Fedyanin, “Non-linear effects in quasi-one-dimensional models of condensed matter theory,” Phys. Rep., 104 (1984), 1–86.

    Article  MathSciNet  Google Scholar 

  19. M. Poppenberg, “Smooth solutions for a class of fully nonlinear Schrödinger type equations,” Nonlinear Anal., 45 (2001), 723–741.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Poppenberg, “On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension,” J. Differential Equations, 172 (2001), 83–115.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Poppenberg, “An inverse function theorem in Sobolev spaces and applications to quasilinear Schrödinger equations,” J. Math. Anal. Appl., 258 (2001), 146–170.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Poppenberg, K. Schmitt, and Z. Q. Wang, “On the existence of soliton solutions to quasilinear Schrödinger equations,” Calc. Var. Partial Differential Equations, 14 (2002), 329–344.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, “Soliton solutions for quasi-linear Schrödinger equations II,” J. Differential Equations, 187 (2003), 473–493.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. J. García, V. V. Konotop, B. Malomed, and V. M. Pérez-García, “A quasi-local Gross-Pitaevskii equation for attractive Bose-Einstein condensates,” Math. Comput. Simulation, 62 (2003), 21–30.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Zhang, “The blowup properties of the initial-boundary problem for second order derivative nonlinear Schrödinger equations,” Acta Math. Sci., 14 (1994), 89–94.

    Google Scholar 

  26. H. Berestycki and T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéarires,” C. R. Acad. Sci. Paris, Seire I, 293 (1981), 489–492.

    MATH  MathSciNet  Google Scholar 

  27. M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolations estimates,” Comm. Math. Phys., 87 (1983), 567–576.

    Article  MATH  Google Scholar 

  28. J. Zhang, “Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations,” Nonlinear Anal., 48 (2002), 191–207.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Zhang, “Sharp threshold of blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,” Comm. Partial Differential Equations, 30 (2005), 1429–1443.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. E. Payne and D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations,” Israel J. Math., 22 (1975), 273–303.

    Article  MathSciNet  Google Scholar 

  31. H. A. Levine, “Instability and non-existence of global solutions to nonlinear wave equations of the form Pu tt = −Au + F(u),” Trans. Amer. Math. Soc, 192 (1974), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Cazenave, An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos, vol. 26, Rio de Janeiro, 1993.

  33. Y. Tsutsumi and J. Zhang, “Instability of optical solitons for two-wave interaction model in cubic nonlinear media,” Adv. Math. Sci. Appl., 8:2 (1998), 691–713.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shu.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 42, No. 2, pp. 68–74, 2008

Original Russian Text Copyright © J. Zhang and J. Shu

Supported in part by the National Natural Science Foundation of China (nos. 10747148 and 10771151) and the Scientific Research Fund of Sichuan Provincial Education Department.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Shu, J. Sharp conditions of global existence for the quasilinear Schrödinger equation. Funct Anal Its Appl 42, 135–140 (2008). https://doi.org/10.1007/s10688-008-0019-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-008-0019-1

Key words

Navigation