Skip to main content
Log in

On rational isomorphisms of Lie algebras

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

Let \(\mathfrak{n}\) be a finite-dimensional noncommutative nilpotent Lie algebra for which the ring of polynomial invariants of the coadjoint representation is generated by linear functions. Let \(\mathfrak{g}\) be an arbitrary Lie algebra. We consider semidirect sums \(\mathfrak{n} \dashv _\rho \mathfrak{g}\) with respect to an arbitrary representation ρ: \(\mathfrak{g}\) → der \(\mathfrak{n}\) such that the center z \(\mathfrak{n}\) of \(\mathfrak{n}\) has a ρ-invariant complement.

We establish that some localization \(\tilde P(\mathfrak{n} \dashv _\rho \mathfrak{g})\) of the Poisson algebra of polynomials in elements of the Lie algebra \(\mathfrak{n} \dashv _\rho \mathfrak{g}\) is isomorphic to the tensor product of the standard Poisson algebra of a nonzero symplectic space by a localization of the Poisson algebra of the Lie subalgebra \((z\mathfrak{n}) \dashv \mathfrak{g}\). If \([\mathfrak{n},\mathfrak{n}] \subseteq z\mathfrak{n}\), then a similar tensor product decomposition is established for the localized universal enveloping algebra of the Lie algebra \(\mathfrak{n} \dashv _\rho \mathfrak{g}\). For the case in which \(\mathfrak{n}\) is a Heisenberg algebra, we obtain explicit formulas for the embeddings of \(\mathfrak{g}_P \) in \(\tilde P(\mathfrak{n} \dashv _\rho \mathfrak{g})\). These formulas have applications, some related to integrability in mechanics and others to the Gelfand-Kirillov conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. B. Vinberg, “Commutative homogeneous spaces and coisotropic symplectic actions,” Usp. Mat. Nauk, 56:1 (2001), 3–62.

    MathSciNet  Google Scholar 

  2. J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris-Bruxelles-Montreal, 1974.

    MATH  Google Scholar 

  3. I. M. Gelfand and A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie,” Publ. Math., Inst. Hautes Etud. Sci., 31 (1966), 506–523.

    MATH  Google Scholar 

  4. W. Borho, P. Gabriel, and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie Algebren, Lecture Notes in Math., vol. 357, Springer-Verlag, 1973.

  5. A. Joseph, “Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras,” Proc. Amer. Math. Soc., 45:1 (1974), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Joseph, “A generalization of the Gelfand-Kirillov conjecture,” Amer. J. Math., 99:6 (1977), 1151–1165.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. C. McConnell, “Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture,” Proc. London Math. Soc., 29:3 (1974), 453–484.

    Article  MATH  MathSciNet  Google Scholar 

  8. Nghiêm-Xuân Hai, “Réduction de produits semi-directs et conjecture de Gelfand et Kirillov,” Bull. Soc. Math. France, 107:3 (1979), 241–267.

    MATH  MathSciNet  Google Scholar 

  9. J. Alev, A. Ooms, and M. Van den Bergh, “A class of counterexamples to the Gelfand-Kirillov conjecture,” Trans. Amer. Math. Soc., 348:5 (1996), 1709–1716.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Alev, A. Ooms, and M. Van den Bergh, “The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight,” J. Algebra, 227:2 (2000), 549–581.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. M. Gelfand and A. A. Kirillov, “The structure of the Lie skew field related to a split semi-simple Lie algebra,” Funkts. Anal. Prilozhen., 3:1 (1969), 7–26; English transl.: Functs. Anal. Appl., 3:1 (1969), 6–21.

    MathSciNet  Google Scholar 

  12. S. T. Sadetov, “On extensions of Lie algebras with the help of the Heisenberg algebra,” Mat Zametki, 78:5 (2005), 745–747.

    MathSciNet  Google Scholar 

  13. S. T. Sadetov, “On the extension of global integrable cases of Euler-Poisson equations with propulsion constant in concomitant axes,” Dokl. Ross. Akad. Nauk, 386:4 (2002), 461–463; English transl.: Dokl. Russ. Acad. Sci., 66:2 (2002), 228–230.

    MathSciNet  Google Scholar 

  14. É. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups [in Russian], Nauka, Moscow, 1988.

    MATH  Google Scholar 

  15. V. I. Arnold and A. V. Givental, “Symplectic geometry,” in: Itogi Nauki i Tekhniki, Current Problems in Mathematics, vol. 4, VINITI, Moscow, 1985, 7–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 41, No. 1, pp. 52–65, 2007

Original Russian Text Copyright © by S. T. Sadetov

The research was supported by RFBR grant 06-01-00275.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadetov, S.T. On rational isomorphisms of Lie algebras. Funct Anal Its Appl 41, 42–53 (2007). https://doi.org/10.1007/s10688-007-0004-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-007-0004-0

Key words

Navigation