Functional Analysis and Its Applications

, Volume 40, Issue 4, pp 304–312 | Cite as

The growth irregularity of slowly growing entire functions

  • I. V. Ostrovskii
  • A. E. Üreyen
Open Access
Article
  • 221 Downloads

Abstract

We show that entire transcendental functions f satisfying
$$\log M(r,f) = o(\log ^2 r),r \to \infty (M(r,f): = \mathop {\max }\limits_{|z| = r} |f(z)|)$$
necessarily have growth irregularity, which increases as the growth diminishes. In particular, if 1 < p < 2, then the asymptotics
$$\log M(r,f) = \log ^p r + o(\log ^{2 - p} r),r \to \infty ,$$
, is impossible. It becomes possible if “o” is replaced by “O.”

Key words

Clunie-Kövari theorem Erdös-Kövari theorem Hayman convexity theorem maximum term Levin’s strong proximate order 

References

  1. [1]
    F. F. Abi-Khuzam, “Hadamard convexity and multiplicity and location of zeros,” Trans. Amer. Math. Soc., 347:8 (1995), 3043–3051.CrossRefMathSciNetGoogle Scholar
  2. [2]
    V. S. Boichuk and A. A. Goldberg, “On the three lines theorem,” Mat. Zametki, 15 (1974), 45–53.MathSciNetGoogle Scholar
  3. [3]
    M. L. Cartwright, Integral Functions, Cambridge Tracts in Math. and Math. Physics, vol. 44, Cambridge, at the Univ. Press, Cambridge, 1956.MATHGoogle Scholar
  4. [4]
    J. Clunie, T. Kövari, “On integral functions having prescribed asymptotic growth, II,” Canad. J. Math., 20 (1968), 7–20.MathSciNetGoogle Scholar
  5. [5]
    P. Erdös, T. Kövari, “On the maximum modulus of entire functions,” Acta Math. Acad. Sci. Hungar., 7 (1956), 305–317.CrossRefMathSciNetGoogle Scholar
  6. [6]
    A. A. Goldberg, B. Ya. Levin, and I. V. Ostrovskii, “Entire and meromorphic functions,” in: Encyclopedia Math. Sci., vol. 85, 1996, 1–193.MathSciNetGoogle Scholar
  7. [7]
    W. K. Hayman, “Note on Hadamard’s convexity theorem,” in: Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif, 1966), Amer. Math. Soc., Providence, R.I., 1968, 210–213.Google Scholar
  8. [8]
    B. Kjellberg, “The convexity theorem of Hadamard-Hayman,” Proc. Roy. Inst. of Techn., 1973, 87–114.Google Scholar
  9. [9]
    B. Ya. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, R.I., 1980.Google Scholar
  10. [10]
    P. C. Rosenbloom, “Probability and entire functions,” in: Studies in Math. Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, 325–332.Google Scholar
  11. [11]
    G. Valiron, Fonctions entières d’ordre fini et fonctions méromorphes, Monographies de “L’Enseignement Mathématique”, vol. 8, Institut de Math., Université, Genève, 1960.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • I. V. Ostrovskii
    • 1
    • 2
  • A. E. Üreyen
    • 1
  1. 1.Department of MathematicsBilkent UniversityAnkaraTurkey
  2. 2.Verkin Institute for Low Temperature Physics and EngineeringKharkovUkraine

Personalised recommendations