Skip to main content
Log in

Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

The existence and uniqueness theorem for isotropic hypersurfaces with prescribed boundary in Lorentzian warped products is proved.The proof is based on minimal Lipschitz extensions of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Beem and P. Ehrlich, Global Lorentzian Geometry, Marcel Dekker. Inc., New York and Basel, 1981.

    Google Scholar 

  2. A. A. Klyachin and V. M. Miklyukov, “Traces of Functions with Spacelike Graphs and Problem about Extension under Restriction on Gradient,” Mat. Sb., 183, No.7, 49–64 (1992); English transl. in: Sb. Math., 76, No. 2, 305–316 (1993).

    Google Scholar 

  3. E. Grigoryeva, A. Klyachin, and V. Miklyukov, “Problem of Functional Extension and Space-Like Surfaces in Minkowski Space,” Z. Anal. Anwendungen, 21, 719–752 (2002).

    Google Scholar 

  4. R. Bartnik and L. Simon, “Spacelike hypersurfaces with prescribed boundary values and mean curvature,” Comm. Math. Phys., 87, 131–152 (1982/83).

    Article  Google Scholar 

  5. A. A. Klyachin and V. M. Miklyukov, “Existence of solutions with singularities for the maximal surfaces equation in Minkowski space,” Mat. Sb., 184, No.9, 103–124 (1993); English transl. in: Sb. Math., 80, No. 1, 87–104 (1995).

    Google Scholar 

  6. G. Aronsson, “Extension of functions satisfying Lipschitz conditions,” Ark. Mat., 6, No.28, 551–561 (1967).

    Google Scholar 

  7. R. Jensen, “Uniqueness of Lipschitz extension: minimizing the sup norm of the gradient,” Arch. Rational Mech. Anal., 123, 51–74 (1993).

    Article  Google Scholar 

  8. M. G. Crandall, L. C. Evans, and R. F. Gariepy, “Optimal Lipschitz extensions and the infinity Laplacian,” Calc. Var. Partial Differential Equations, 13, No.2, 123–139 (2001).

    Google Scholar 

  9. P. Juutinen, “Absolutely minimizing Lipschitz extensions on a metric space,” Ann. Acad. Sci. Fenn. Math., 27, 57–67 (2002).

    Google Scholar 

  10. H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  11. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Moscow, Nauka, 1979.

    Google Scholar 

  12. R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York-London, 1964.

    Google Scholar 

  13. E. J. McShane, “Extension of range of functions,” Bull. Amer. Math. Soc., 40, 837–842 (1934).

    Google Scholar 

  14. H. Whitney, “Analytic extensions of differentiable functions defined in closed sets,” Trans. Amer. Math. Soc., 36, 63–89 (1934).

    MathSciNet  Google Scholar 

  15. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publishers, New York-London-Sydney, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 39, No. 3, pp. 28–36, 2005

Original Russian Text Copyright #x00A9; by A. A. Klyachin and V. M. Miklyukov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyachin, A.A., Miklyukov, V.M. Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions. Funct Anal Its Appl 39, 187–193 (2005). https://doi.org/10.1007/s10688-005-0037-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-005-0037-1

Key words

Navigation