Skip to main content
Log in

Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Large, non-stationary spatio-temporal data are ubiquitous in modern statistical applications, and the modeling of spatio-temporal extremes is crucial for assessing risks in environmental sciences among others. While the modeling of extremes is challenging in itself, the prediction of rare events at unobserved spatial locations and time points is even more difficult. In this Editorial, we describe the data competition that was organized for the 11th international conference on Extreme-Value Analysis (EVA 2019), for which several teams modeled and predicted Red Sea surface temperature extremes over space and time. After introducing the dataset and the goal of the competition, we disclose the final ranking of the teams, and we finally discuss some interesting outcomes and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cantin, N.E., Cohen, A.L., Karnauskas, K.B., Tarrant, A.M., McCorkle, D.C.: Ocean warming slows coral growth in the central Red Sea. Science 329(5989), 322–325 (2010)

    Article  Google Scholar 

  • Castro-Camilo, D, Huser, R: Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes. Journal of the American Statistical Association To appear (2019)

  • Castruccio, S., Huser, R., Genton, M.G.: High-order composite likelihood inference for max-stable distributions and processes. J. Comput. Graph. Stat. 25, 1212–1229 (2016)

    Article  MathSciNet  Google Scholar 

  • Chaidez, V., Dreano, D., Agusti, S., Duarte, C.M., Hoteit, I.: Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 7(8144), 1–8 (2017)

    Google Scholar 

  • Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modelling of spatial extremes (with Discussion). Stat. Sci. 27(2), 161–186 (2012)

    Article  Google Scholar 

  • Davison, A.C., Huser, R., Thibaud, E.: Spatial extremes. In: Gelfand, A.E., Fuentes, M, Smith, R.L. (eds.) Handbook of Environmental and Ecological Statistics, pp 711–744. CRC Press (2019)

  • Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012)

    Article  Google Scholar 

  • Engelke, S., Malinowski, A., Kabluchko, Z., Schlather, M.: Estimation of Huesler–Reiss distributions and Brown–Resnick processes. J. R. Stati. Soc.: Series B (Stat. Methodol.) 77(1), 239–265 (2015)

    Article  Google Scholar 

  • de Fondeville, R., Davison, A.C.: High-dimensional peaks-over-threshold inference. Biometrika 105(3), 575–592 (2018)

    Article  MathSciNet  Google Scholar 

  • Gneiting, T., Raftery, A.E.: Scritly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    Article  Google Scholar 

  • Gneiting, T., Ranjan, R.: Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Bus. Econ. Stat. 29(3), 411–422 (2011)

    Article  MathSciNet  Google Scholar 

  • Hazra, A., Huser, R: A low-rank semiparametric Bayesian spatial model for estimating extreme Red Sea surface temperature hotspots. arXiv:1912.05657 (2019)

  • Hazra, A., Reich, B.J., Shaby, B.A., Staicu, A.: A semiparametric Bayesian model for spatiotemporal extremes. arXiv:1812.11699 (2019)

  • Huser, R., Davison, A.C.: Space-time modelling of extreme events. J. R. Stat. Soc.: Series B (Stat. Methodol.) 76(2), 439–461 (2014)

    Article  MathSciNet  Google Scholar 

  • Huser, R., Genton, M.G.: Non-stationary dependence structures for spatial extremes. J. Agric. Biol. Environ. Stat.s 21(3), 470–491 (2016)

    Article  MathSciNet  Google Scholar 

  • Huser, R., Wadsworth, J.L.: Modeling spatial processes with unknown extremal dependence class. J. Am. Stat. Assoc. 114, 434–444 (2019)

    Article  MathSciNet  Google Scholar 

  • Huser, R., Opitz, T., Thibaud, E.: Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures. Spatial Stat. 21, 166–186 (2017)

    Article  MathSciNet  Google Scholar 

  • Huser, R., Dombry, C., Ribatet, M., Genton, M.G.: Full likelihood inference for max-stable data. Stat 8, e218 (2019)

    Article  MathSciNet  Google Scholar 

  • Lerch, S., Thorarinsdottir, T.L.: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus A: Dyn. Meteorol. Oceanogr. 65(1), 21206 (2013)

    Article  Google Scholar 

  • Lerch, S., Thorarinsdottir, T.L., Ravazzolo, F., Gneiting, T.: Forecaster’s dilemma: Extreme events and forecast evaluation. Stat. Sci. 32(1), 106–127 (2017)

    Article  MathSciNet  Google Scholar 

  • McClanahan, T.R., Ateweberhan, M., Muhando, C.A., Maina, J., Mohammed, M.S.: Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77(4), 503–525 (2007)

    Article  Google Scholar 

  • Morris, S.A., Reich, B.J., Thibaud, E., Cooley, D.: A space-time skew-t model for threshold exceedances. Biometrics 73(3), 749–758 (2017)

    Article  MathSciNet  Google Scholar 

  • Oesting, M., Schlather, M., Friederichs, P.: Statistical post-processing of forecasts for extremes using bivariate Brown-Resnick processes with an application to wind gusts. Extremes 20(2), 309–332 (2017)

    Article  MathSciNet  Google Scholar 

  • Opitz, T.: Extremal t processes: Elliptical domain of attraction and a spectral representation. J. Multivar. Anal. 122(1), 409–413 (2013)

    Article  MathSciNet  Google Scholar 

  • Opitz, T., Huser, R., Bakka, H., Rue, H.: INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes 21(3), 441–462 (2018)

    Article  MathSciNet  Google Scholar 

  • Padoan, S.A., Ribatet, M., Sisson, S.A.: Likelihood-based inference for max-stable processes. J. Am. Stat. Assoc. 105(489), 263–277 (2010)

    Article  MathSciNet  Google Scholar 

  • Reich, B.J., Shaby, B.A.: A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat. 6(4), 1430–1451 (2012)

    Article  MathSciNet  Google Scholar 

  • Vettori, S., Huser, R., Genton, M.G.: Bayesian modeling of air pollution extremes using nested multivariate max-stable processes. Biometrics 75, 831–841 (2019)

    Article  MathSciNet  Google Scholar 

  • Wadsworth, J.L., Tawn, J.A.: Dependence modelling for spatial extremes. Biometrika 99(2), 253–272 (2012)

    Article  MathSciNet  Google Scholar 

  • Wadsworth, J.L., Tawn, J.A.: Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101(1), 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  • Wintenberger, O.: Editorial: Special issue on the extreme value analysis conference challenge “prediction of extremal precipitation”. Extremes 21(3), 425–429 (2018)

    Article  MathSciNet  Google Scholar 

  • Yu, H., Uy, W.I.T., Dauwels, J.: Modeling spatial extremes via ensemble-of-trees of pairwise copulas. IEEE Trans. Signal Process. 65(3), 571–586 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Bojan Basrak, Hrvoje Planinic and the whole EVA 2019 conference local and scientific committees, for organizing such a successful conference. I also thank Olivier Wintenberger, Alec Stephenson, Holger Rootzén and Thomas Mikosch for their support, as well as for helpful discussions and advice on the data competition, and for providing feedback on an early draft of this Editorial. Finally, I thank and congratulate all teams, without whose active and positive participation this competition would not have taken place.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Huser.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3434.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huser, R. Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes. Extremes 24, 91–104 (2021). https://doi.org/10.1007/s10687-019-00369-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-019-00369-9

Keywords

AMS 2000 Subject Classifications

Navigation