Skip to main content
Log in

Tail asymptotics for Shepp-statistics of Brownian motion in \(\mathbb {R}^{d}\)

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Let X(t), \(t\in \mathbb {R}\), be a d-dimensional vector-valued Brownian motion, d ≥ 1. For all \(\boldsymbol {b}\in \mathbb {R}^{d}\setminus (-\infty ,0]^{d}\) we derive exact asymptotics of

$$ \mathbb{P}\{\boldsymbol{X}(t+s)-\boldsymbol{X}(t) >u\boldsymbol{b}\text{ for some } t\in[0,T],\ s\in[0,1]\} \quad\text{as } u\to\infty, $$

that is the asymptotical behavior of tail distribution of vector-valued analog of Shepp-statistics for X; we cover not only the case of a fixed time-horizon T > 0 but also cases where T → 0 or \(T\to \infty \). Results for high level excursion probabilities of vector-valued processes are rare in the literature, with currently no available approach suitable for our problem. Our proof exploits some distributional properties of vector-valued Brownian motion, and results from quadratic programming problems. As a by-product we derive a new inequality for the ‘supremum’ of vector-valued Brownian motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anshin, A.B.: On the probability of simultaneous extrema of two Gaussian nonstationary processes. Theory Probab. Appl. 50(3), 353–366 (2006)

    Article  MathSciNet  Google Scholar 

  • Bai, L., Dębicki, K., Liu, P.: Extremes of vector-valued Gaussian processes with trend. J. Math. Anal. Appl. 465(1), 47–74 (2018)

    Article  MathSciNet  Google Scholar 

  • Cressie, N.: The asymptotic distribution of the scan statistic under uniformity. Ann. Probab. 8(4), 828–840 (1980)

    Article  MathSciNet  Google Scholar 

  • Dębicki, K., Hashorva, E.: On extremal index of max-stable stationary processes. Probab. Math. Statist. 37(2), 299–317 (2017)

    MathSciNet  MATH  Google Scholar 

  • Dębicki, K., Hashorva, E.: Approximation of supremum of max-stable stationary processes & Pickands constants. J. Theor. Probab., in press (2019)

  • Dębicki, K., Hashorva, E., Ji, L.: Extremes of a class of nonhomogeneous Gaussian random fields. Ann. Probab. 44(2), 984–1012 (2016)

    Article  MathSciNet  Google Scholar 

  • Dębicki, K., Hashorva, E., Ji, L., Rolski, T.: Extremal behaviour of hitting a cone by correlated Brownian motion with drift. Stochastic Process. Appl. 128, 4171–4206 (2018)

    Article  MathSciNet  Google Scholar 

  • Dębicki, K., Hashorva, E., Ji, L., Tabiś, K.: On the probability of conjunctions of stationary Gaussian processes. Statist. Probab. Lett. 88, 141–148 (2014)

    Article  MathSciNet  Google Scholar 

  • Dębicki, K., Hashorva, E., Liu, P.: Uniform tail approximation of homogenous functionals of Gaussian fields. Adv. in Appl. Probab. 49(4), 1037–1066 (2017)

    Article  MathSciNet  Google Scholar 

  • Dębicki, K., Kosiński, K.M., Mandjes, M., Rolski, T.: Extremes of multidimensional Gaussian processes. Stochastic Process. Appl. 120(12), 2289–2301 (2010)

    Article  MathSciNet  Google Scholar 

  • Deheuvels, P., Devroye, L.: Limit laws of Erdös-Rényi-Shepp type. Ann. Probab. 15(4), 1363–1386 (1987)

    Article  MathSciNet  Google Scholar 

  • Dieker, A.B., Mikosch, T.: Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes 18, 301–314 (2015)

    Article  MathSciNet  Google Scholar 

  • Dieker, A.B., Yakir, B.: On asymptotic constants in the theory of Gaussian processes. Bernoulli 20(3), 1600–1619 (2014)

    Article  MathSciNet  Google Scholar 

  • Dümbgen, L., Spokoiny, V.G.: Multiscale testing of qualitative hypotheses. Ann. Statist. 29(1), 124–152 (2001)

    Article  MathSciNet  Google Scholar 

  • Hashorva, E., Tan, Z.: Extremes of Shepp statistics for fractional Brownian motion. Statist. Probab. Lett. 83, 2242–2247 (2013)

    Article  MathSciNet  Google Scholar 

  • Pickands, J. III: Maxima of stationary Gaussian processes. Z. Wahrsch. Verw. Gebiete 7, 190–223 (1967)

    Article  MathSciNet  Google Scholar 

  • Piterbarg, V.I.: Asymptotic methods in the theory of Gaussian processes and fields, volume 148 of Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)

    Google Scholar 

  • Shepp, L.A.: Radon-Nikodým derivatives of Gaussian measures. Ann. Math. Statist. 37, 321–354 (1966)

    Article  MathSciNet  Google Scholar 

  • Shepp, L.A.: First passage time for a particular Gaussian process. Ann. Math. Statist. 42, 946–951 (1971)

    Article  MathSciNet  Google Scholar 

  • Siegmund, D., Venkatraman, E.S.: Using the generalized likelihood ratio statistic for sequential detection of a change-point. Ann. Statist. 23(1), 255–271 (1995)

    Article  MathSciNet  Google Scholar 

  • Taylor, J.E.: A Gaussian kinematic formula. Ann. Probab. 34(1), 122–158 (2006)

    Article  MathSciNet  Google Scholar 

  • Worsley, K.J., Friston, K.J.: A test for a conjunction. Statist. Probab. Lett. 47(2), 135–140 (2000)

    Article  MathSciNet  Google Scholar 

  • Zholud, D.: Extremes of Shepp statistics for the Wiener process. Extremes 11, 339–351 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees for their valuable comments and suggestions to improve the quality of the paper. Support from SNSF Grant no. 200021-175752/1 is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Korshunov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Quadratic programming problems

Appendix: Quadratic programming problems

The next result is known and formulated for instance in Dębicki et al. (2018).

Lemma A.1

Let Σ bea positive definite matrix of sized × dwithinverse Σ− 1.If\(\boldsymbol {b} \in \mathbb {R}^{d} \setminus (-\infty , 0]^{d} \),then the quadratic programming problem πΣ(b) formulatedin Eq. 3 has a unique solution\(\widetilde {\boldsymbol {b}}\)andthere exists a unique non-empty index set\(I\subseteq \{1{\ldots } d\}\)withmdelementssuch that

$$ \begin{array}{@{}rcl@{}} \widetilde{\boldsymbol{b}}_{I} = \boldsymbol{b}_{I} , \text{ and if } J := \{ 1 {\ldots} d\}\setminus I \not = \emptyset, \text{ then } \widetilde{\boldsymbol{b}}_{J} &=& {\Sigma}_{JI} {\Sigma}_{II}^{-1} \boldsymbol{b}_{I} \geq \boldsymbol{b}_{J}, ~~{\Sigma}_{II}^{-1} \boldsymbol{b}_{I}>\boldsymbol{0}_I, \end{array} $$
(32)
$$ \begin{array}{@{}rcl@{}} \min_{\boldsymbol{x} \geq \boldsymbol{b}}\boldsymbol{x}^{\top} {{\Sigma}^{-1}}\boldsymbol{x}= \widetilde{\boldsymbol{b}}^{\top} {{\Sigma}^{-1}} \widetilde{\boldsymbol{b}} &=& \boldsymbol{b}_{I}^{\top} {\Sigma}_{II}^{-1}\boldsymbol{b}_{I}>0. \end{array} $$
(33)

Furthermore, for any\(\boldsymbol {x}\in \mathbb {R}^{d}\)we have

$$ \boldsymbol{x}^{\top} {{\Sigma}^{-1}} \widetilde{\boldsymbol{b}}= \boldsymbol{x}_I^{\top} {\Sigma}_{II}^{-1} \widetilde{\boldsymbol{b}}_I= \boldsymbol{x}_I^{\top} {\Sigma}_{II}^{-1}\boldsymbol{b}_I $$
(34)

and if\(\boldsymbol {b}= c \boldsymbol {1}, c\in (0,\infty )\), then 2 ≤|I|≤kandJis empty if Σ− 1b > 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, D., Wang, L. Tail asymptotics for Shepp-statistics of Brownian motion in \(\mathbb {R}^{d}\). Extremes 23, 35–54 (2020). https://doi.org/10.1007/s10687-019-00357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-019-00357-z

Keywords

AMS 2000 Subject Classifications

Navigation