Abstract
The problem of evaluating the accuracy of Poisson approximation to the distribution of a sum of independent integer-valued random variables has attracted a lot of attention in the past six decades. From a practical point of view, it has important applications in insurance, reliability theory, extreme value theory, etc.; from a theoretical point of view, the topic provides insights into Kolmogorov’s problem. The task of establishing an estimate with the best possible constant at the leading term remained open for decades. The paper presents a solution to that problem. A first-order asymptotic expansion is established as well. We generalise and sharpen the corresponding inequalities of Prokhorov, LeCam, Barbour, Hall, Deheuvels, Pfeifer, and Roos. A new result is established for the intensively studied topic of Poisson approximation to the binomial distribution.
Similar content being viewed by others
References
Arak, T., Zaitsev, A.Yu: Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math. 174, 3–214 (1986)
Arenbaev, N.K.: Asymptotic behavior of the multinomial distribution. Theory Probab. Appl. 21, 805–810 (1976)
Balakrishnan, N., Koutras, M.: Runs and Scans with Applications. Wiley, New York (2001)
Barbour, A.D.: Asymptotic expansions in the Poisson limit theorem. Ann. Probab. 15(2), 748–766 (1987)
Barbour, A.D., Čekanavičius, V: Total variation asymptotics for sums of independent integer random variables. Ann. Probab. 30(2), 509–545 (2002)
Barbour, A.D., Eagleson, G.K.: Poisson approximation for some statistics based on exchangeable trials. Adv. Appl. Probab. 15(3), 585–600 (1983)
Barbour, A.D., Hall, P.: On the rate of Poisson convergence. Math. Proc. Camb. Philos. Soc. 95, 473–480 (1984)
Barbour, A.D., Jensen, J.L.: Local and tail approximations near the Poisson limit. Scand. J. Statist. 16, 75–87 (1989)
Barbour, A.D., Xia, A.: Poisson perturbations. ESAIM Probab. Statist. 3, 131–150 (1999)
Barbour, A.D., Holst, L., Janson, S.: Poisson Approximation. Clarendon Press, Oxford (1992)
Barbour, A.D., Chen, L.H.Y., Choi, K.P.: Poisson approximation for unbounded functions, I: independent summands. Stat. Sin. 5(2), 749–766 (1995)
Bernstein, S.N.: Sur l’extensiori du theoreme limite du calcul des probabilites aux sommes de quantites dependantes. Math. Annalen 97, 1–59 (1926)
Borisov, I.S., Ruzankin, P.S.: Poisson approximation for expectations of unbounded functions of independent random variables. Ann. Probab. 30(4), 1657–1680 (2002)
Borovkov, K. A.: Renement of Poisson approximation. Theory Probab. Appl. 33(2), 343–347 (1988)
Čekanavičius, V, Kruopis, J: Signed Poisson approximation: a possible alternative to normal and Poisson laws. Bernoulli 6(4), 591–606 (2000)
Čekanavičius, V, Roos, B: An expansion in the exponent for compound binomial approximations. Liet. Matem. Rink. 46, 67–110 (2006)
Čekanavičius, V, Vaitkus, P: A centered Poisson approximation via Stein’s method. Lithuanian. Math. J. 41(4), 319–329 (2001)
Deheuvels, P., Pfeifer, D.: A semigroup approach to Poisson approximation. Ann. Probab. 14(2), 663–676 (1986)
Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15(3), 458–486 (1970)
Franken, P.: Approximation der verteilungen von summen unabhängiger nichtnegativer ganzzahliger zufallsgrössen durch Poissonsche verteilunged. Math. Nachr. 27, 303–340 (1964)
Gerber, H.U.: An Introduction to Mathematical Risk Theory. Huebner Foundation, Philadelphia (1979)
Gini, C.: Di una misura delle relazioni tra le graduatorie di due caratteri. In: Appendix to Hancini A. Le Elezioni Generali Politiche del 1913 nel Comune di Roma. Ludovico Cecehini, Rome (1914)
Haight, F.A.: Handbook of the Poisson Distribution. Wiley, New York (1967)
Herrmann, H.: Variationsabstand zwischen der Verteilung einer Summe unabhängiger nichtnegativer ganzzahliger Zufallsgrössen und Poissonschen Verteilungen. Math. Nachr. 29(5), 265–289 (1965)
Kerstan, J.: Verallgemeinerung eines satzes von Prochorow und Le Cam. Z. Wahrsch. Verw. Gebiete 2, 173–179 (1964)
Khintchin, A.Y.: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1933)
Kantorovich, L.: On the translocation of mass. Doklady USSR Acad. Sci. 37 (7–8), 227–229 (1942). Trans: Management Sci. (1958) 5(1), 1-4
Kolmogorov, A.N.: Two uniform limit theorems for sums of independent random variables. Theory Probab. Appl. 1(4), 384–394 (1956)
Kruopis, J.: Precision of approximations of the generalized binomial distribution by convolutions of Poisson measures. Lithuanian Math. J. 26, 37–49 (1986)
Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)
LeCam, L.: An approximation theorem for the Poison binomial distribution. Pacif. J. Math. 19(3), 1181–1197 (1960)
LeCam, L.: On the distribution of sums of independent random variables. In: Proceedings of the International Res. Sem. Statist. Lab. University California, pp 179–202. Springer, New York (1965)
Liapunov, A.M.: Nouvelle forme du theor‘eme sur la limite des probabilites. Mem. Acad. Imp. Sci. St.–Peterburg 12, 1–24 (1901)
Mattner, L., Roos, B.: A shorter proof of Kanter’s Bessel function concentration bound. Probab. Theory Relat. Fields 139, 407–421 (2007)
Meshalkin, L.D.: On the approximation of polynomial distributions by infinitely-divisible laws. Theory Probab. Appl. 5(1), 114–124 (1960)
Novak, S.Y.: Extreme Value Methods with Applications to Finance. Chapman & Hall/CRC Press, London (2011). ISBN 9781439835746
Novak, S.Y.: Poisson approximation. arXiv:1901.01847(2018)
Presman, E.L.: Approximation of binomial distributions by infinitely divisible ones. Theory Probab. Appl. 28, 393–403 (1983)
Presman, E.L.: On Poisson approximation in total variation for a sum of independent Bernoulli random variables. Theory Probab. Appl. 30(2), 391–396 (1985)
Prokhorov, Y: Asymptotic behavior of the binomial distribution. Uspehi Matem. Nauk 8(No3(55)), 135–142 (1953)
Romanowska, M.: A note on the upper bound for the distribution in total variation between the binomial and the Poisson distribution. Statist. Neerlandica 31, 127–130 (1977)
Roos, B.: Asymptotic and sharp bounds in the Poisson approximation to the Poisson-binomial distribution. Bernoulli 5(6), 1021–1034 (1999)
Roos, B.: Sharp constants in the Poisson approximation. Statist. Probab. Lett. 52, 155–168 (2001)
Roos, B.: Improvements in the Poisson approximation of mixed Poisson distributions. J. Statist. Plan. Inference 113, 467–483 (2003)
Salvemini, T.: Sul calcolo degli indici di concordanza tra due caratteri quantitativi. Atti della VI Riunione della Soc. Ital. di Statistica (1943)
Shevtsova, I.G.: On absolute constants in the Berry–Esseen inequality and its structural and non-uniform refinements. Inf. Appl. 7(1), 124–125 (2013)
Shorgin, S.Y.: Approximation of a generalized binomial distribution. Theory Probab. Appl. 22(4), 846–850 (1977)
Stein, C.: A way of using auxiliary randomization. In: Probability theory. Proceedings of Singapore Probability Conference, pp 159–180. de Gruyter, Berlin (1992)
Uspensky, J.: On Ch.Jordan’s series for probability. Ann. Math. 32(2), 306–312 (1931)
Vasershtein: Markov processes on a countable product of spaces describing large automated systems. Probl. Inform. Trans. 14, 64–73 (1969)
Xia, A.: On using the first difference in the Stein–Chen method. Ann. Appl. Probab. 7(4), 899–916 (1997)
Xia, A.: Stein’s method for conditional compound Poisson approximation. Statist. Probab. Lett. 100, 19–26 (2015)
Zaitsev, A.Yu.: On the accuracy of approximation of distributions of sums of independent random variables which are nonzero with a small probability by means of accompanying laws. Theory Probab. Appl. 28(4), 657–669 (1983)
Acknowledgements
The author is grateful to the reviewers for helpful remarks.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Novak, S.Y. On the accuracy of Poisson approximation. Extremes 22, 729–748 (2019). https://doi.org/10.1007/s10687-019-00350-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10687-019-00350-6