Skip to main content
Log in

On the accuracy of Poisson approximation

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

The problem of evaluating the accuracy of Poisson approximation to the distribution of a sum of independent integer-valued random variables has attracted a lot of attention in the past six decades. From a practical point of view, it has important applications in insurance, reliability theory, extreme value theory, etc.; from a theoretical point of view, the topic provides insights into Kolmogorov’s problem. The task of establishing an estimate with the best possible constant at the leading term remained open for decades. The paper presents a solution to that problem. A first-order asymptotic expansion is established as well. We generalise and sharpen the corresponding inequalities of Prokhorov, LeCam, Barbour, Hall, Deheuvels, Pfeifer, and Roos. A new result is established for the intensively studied topic of Poisson approximation to the binomial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arak, T., Zaitsev, A.Yu: Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math. 174, 3–214 (1986)

    MathSciNet  MATH  Google Scholar 

  • Arenbaev, N.K.: Asymptotic behavior of the multinomial distribution. Theory Probab. Appl. 21, 805–810 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, N., Koutras, M.: Runs and Scans with Applications. Wiley, New York (2001)

    Book  MATH  Google Scholar 

  • Barbour, A.D.: Asymptotic expansions in the Poisson limit theorem. Ann. Probab. 15(2), 748–766 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., Čekanavičius, V: Total variation asymptotics for sums of independent integer random variables. Ann. Probab. 30(2), 509–545 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., Eagleson, G.K.: Poisson approximation for some statistics based on exchangeable trials. Adv. Appl. Probab. 15(3), 585–600 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., Hall, P.: On the rate of Poisson convergence. Math. Proc. Camb. Philos. Soc. 95, 473–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., Jensen, J.L.: Local and tail approximations near the Poisson limit. Scand. J. Statist. 16, 75–87 (1989)

    MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., Xia, A.: Poisson perturbations. ESAIM Probab. Statist. 3, 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D., Holst, L., Janson, S.: Poisson Approximation. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  • Barbour, A.D., Chen, L.H.Y., Choi, K.P.: Poisson approximation for unbounded functions, I: independent summands. Stat. Sin. 5(2), 749–766 (1995)

    MathSciNet  MATH  Google Scholar 

  • Bernstein, S.N.: Sur l’extensiori du theoreme limite du calcul des probabilites aux sommes de quantites dependantes. Math. Annalen 97, 1–59 (1926)

    Article  MATH  Google Scholar 

  • Borisov, I.S., Ruzankin, P.S.: Poisson approximation for expectations of unbounded functions of independent random variables. Ann. Probab. 30(4), 1657–1680 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Borovkov, K. A.: Renement of Poisson approximation. Theory Probab. Appl. 33(2), 343–347 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Čekanavičius, V, Kruopis, J: Signed Poisson approximation: a possible alternative to normal and Poisson laws. Bernoulli 6(4), 591–606 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Čekanavičius, V, Roos, B: An expansion in the exponent for compound binomial approximations. Liet. Matem. Rink. 46, 67–110 (2006)

    MathSciNet  MATH  Google Scholar 

  • Čekanavičius, V, Vaitkus, P: A centered Poisson approximation via Stein’s method. Lithuanian. Math. J. 41(4), 319–329 (2001)

    MathSciNet  MATH  Google Scholar 

  • Deheuvels, P., Pfeifer, D.: A semigroup approach to Poisson approximation. Ann. Probab. 14(2), 663–676 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15(3), 458–486 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Franken, P.: Approximation der verteilungen von summen unabhängiger nichtnegativer ganzzahliger zufallsgrössen durch Poissonsche verteilunged. Math. Nachr. 27, 303–340 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Gerber, H.U.: An Introduction to Mathematical Risk Theory. Huebner Foundation, Philadelphia (1979)

    MATH  Google Scholar 

  • Gini, C.: Di una misura delle relazioni tra le graduatorie di due caratteri. In: Appendix to Hancini A. Le Elezioni Generali Politiche del 1913 nel Comune di Roma. Ludovico Cecehini, Rome (1914)

  • Haight, F.A.: Handbook of the Poisson Distribution. Wiley, New York (1967)

    MATH  Google Scholar 

  • Herrmann, H.: Variationsabstand zwischen der Verteilung einer Summe unabhängiger nichtnegativer ganzzahliger Zufallsgrössen und Poissonschen Verteilungen. Math. Nachr. 29(5), 265–289 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Kerstan, J.: Verallgemeinerung eines satzes von Prochorow und Le Cam. Z. Wahrsch. Verw. Gebiete 2, 173–179 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Khintchin, A.Y.: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1933)

    Google Scholar 

  • Kantorovich, L.: On the translocation of mass. Doklady USSR Acad. Sci. 37 (7–8), 227–229 (1942). Trans: Management Sci. (1958) 5(1), 1-4

    Google Scholar 

  • Kolmogorov, A.N.: Two uniform limit theorems for sums of independent random variables. Theory Probab. Appl. 1(4), 384–394 (1956)

    Article  Google Scholar 

  • Kruopis, J.: Precision of approximations of the generalized binomial distribution by convolutions of Poisson measures. Lithuanian Math. J. 26, 37–49 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    Book  MATH  Google Scholar 

  • LeCam, L.: An approximation theorem for the Poison binomial distribution. Pacif. J. Math. 19(3), 1181–1197 (1960)

    Article  Google Scholar 

  • LeCam, L.: On the distribution of sums of independent random variables. In: Proceedings of the International Res. Sem. Statist. Lab. University California, pp 179–202. Springer, New York (1965)

    Google Scholar 

  • Liapunov, A.M.: Nouvelle forme du theor‘eme sur la limite des probabilites. Mem. Acad. Imp. Sci. St.–Peterburg 12, 1–24 (1901)

    Google Scholar 

  • Mattner, L., Roos, B.: A shorter proof of Kanter’s Bessel function concentration bound. Probab. Theory Relat. Fields 139, 407–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Meshalkin, L.D.: On the approximation of polynomial distributions by infinitely-divisible laws. Theory Probab. Appl. 5(1), 114–124 (1960)

    Article  MATH  Google Scholar 

  • Novak, S.Y.: Extreme Value Methods with Applications to Finance. Chapman & Hall/CRC Press, London (2011). ISBN 9781439835746

    Book  Google Scholar 

  • Novak, S.Y.: Poisson approximation. arXiv:1901.01847(2018)

  • Presman, E.L.: Approximation of binomial distributions by infinitely divisible ones. Theory Probab. Appl. 28, 393–403 (1983)

    Article  MATH  Google Scholar 

  • Presman, E.L.: On Poisson approximation in total variation for a sum of independent Bernoulli random variables. Theory Probab. Appl. 30(2), 391–396 (1985)

    MATH  Google Scholar 

  • Prokhorov, Y: Asymptotic behavior of the binomial distribution. Uspehi Matem. Nauk 8(No3(55)), 135–142 (1953)

    MathSciNet  MATH  Google Scholar 

  • Romanowska, M.: A note on the upper bound for the distribution in total variation between the binomial and the Poisson distribution. Statist. Neerlandica 31, 127–130 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Roos, B.: Asymptotic and sharp bounds in the Poisson approximation to the Poisson-binomial distribution. Bernoulli 5(6), 1021–1034 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Roos, B.: Sharp constants in the Poisson approximation. Statist. Probab. Lett. 52, 155–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Roos, B.: Improvements in the Poisson approximation of mixed Poisson distributions. J. Statist. Plan. Inference 113, 467–483 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Salvemini, T.: Sul calcolo degli indici di concordanza tra due caratteri quantitativi. Atti della VI Riunione della Soc. Ital. di Statistica (1943)

  • Shevtsova, I.G.: On absolute constants in the Berry–Esseen inequality and its structural and non-uniform refinements. Inf. Appl. 7(1), 124–125 (2013)

    MathSciNet  Google Scholar 

  • Shorgin, S.Y.: Approximation of a generalized binomial distribution. Theory Probab. Appl. 22(4), 846–850 (1977)

    Article  MathSciNet  Google Scholar 

  • Stein, C.: A way of using auxiliary randomization. In: Probability theory. Proceedings of Singapore Probability Conference, pp 159–180. de Gruyter, Berlin (1992)

  • Uspensky, J.: On Ch.Jordan’s series for probability. Ann. Math. 32(2), 306–312 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  • Vasershtein: Markov processes on a countable product of spaces describing large automated systems. Probl. Inform. Trans. 14, 64–73 (1969)

    MathSciNet  Google Scholar 

  • Xia, A.: On using the first difference in the Stein–Chen method. Ann. Appl. Probab. 7(4), 899–916 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, A.: Stein’s method for conditional compound Poisson approximation. Statist. Probab. Lett. 100, 19–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zaitsev, A.Yu.: On the accuracy of approximation of distributions of sums of independent random variables which are nonzero with a small probability by means of accompanying laws. Theory Probab. Appl. 28(4), 657–669 (1983)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewers for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Novak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, S.Y. On the accuracy of Poisson approximation. Extremes 22, 729–748 (2019). https://doi.org/10.1007/s10687-019-00350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-019-00350-6

Keywords

AMS 2000 Subject Classification

Navigation