Abstract
This paper concerns our approach to the EVA2017 challenge, the aim of which was to predict extreme precipitation quantiles across several sites in the Netherlands. Our approach uses a Bayesian hierarchical structure, which combines Gamma and generalised Pareto distributions. We impose a spatio-temporal structure in the model parameters via an autoregressive prior. Estimates are obtained using Markov chain Monte Carlo techniques and spatial interpolation. This approach has been successful in the context of the challenge, providing reasonable improvements over the benchmark.
This is a preview of subscription content, access via your institution.
References
Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data. CRC Press, Boca Raton (2004)
Behrens, C.N., Lopes, H.F., Gamerman, D.: Bayesian analysis of extreme events with threshold estimation. Stat. Model. 4(3), 227–244 (2004)
Brown, B.M., Resnick, S.I.: Extreme values of independent stochastic processes. J. Appl. Probab. 14(4), 732–739 (1977)
Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer, London (2001)
Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824–840 (2007)
Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)
de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12(4), 1194–1204 (1984)
Diggle, P.J., Tawn, J.A., Moyeed, R.A.: Model-based geostatistics. J. R. Stat. Soc.: Ser. C: (Appl. Stat.) 47(3), 299–350 (1998)
Fawcett, L., Walshaw, D.: A hierarchical model for extreme wind speeds. J. R. Stat. Soc.: Ser. C: (Appl. Stat.) 55(5), 631–646 (2006)
Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24(2), 180–190 (1928)
Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5(3), 219–235 (2002)
Knorr-Held, L., Richardson, S.: Some remarks on Gaussian Markov random field models for disease mapping. In: Green, PJ, Hjort, NL (eds.) Highly Structured Stochastic Systems, pp 203–207. Oxford University Press, Oxford (2003)
Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)
MacDonald, A., Scarrott, C., Lee, D., Darlow, B., Reale, M., Russell, G.: A flexible extreme value mixture model. Comput. Stat. Data Anal. 55(6), 2137–2157 (2011)
Martins, E.S., Stedinger, J.R., et al: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36(3), 737–744 (2000)
Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3 (1), 119–131 (1975)
Reich, B.J., Shaby, B.A.: A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat. 6(4), 1430–1451 (2012)
Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)
Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16(3), 407–426 (2009)
Scarrott, C., MacDonald, A.: A review of extreme value threshold estimation and uncertainty quantification. REVSTAT—Stat. J. 10(1), 33–60 (2012)
Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33–44 (2002)
Smith, R.L.: Max-stable processes and spatial extremes. Unpublished manuscript (1990)
So, B.J., Kwon, H.H., Kim, D., Lee, S.O.: Modeling of daily rainfall sequence and extremes based on a semiparametric Pareto tail approach at multiple locations. J. Hydrol. 529, 1442–1450 (2015)
Wadsworth, J.L., Tawn, J.A., Jonathan, P.: Accounting for choice of measurement scale in extreme value modeling. Ann. Appl. Stat. 4(3), 1558–1578 (2010)
Wilks, D.S.: Statistical Methods in the Atmospheric Sciences, 2nd edn. International Geophysics Series, vol 59. Elsevier, Amsterdam (2006)
Wintenberger, O.: Editorial: special issue on the Extreme Value Analysis conference challenge ‘Prediction of extremal precipitation’. Extremes (to appear) (2018)
Yunus, R.M., Hasan, M.M., Razak, N.A., Zubairi, Y.Z., Dunn, P.K.: Modelling daily rainfall with climatological predictors: Poisson-Gamma generalized linear modelling approach. Int. J. Climatol. 37(3), 1391–1399 (2017)
Acknowledgements
The authors gratefully acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC) funded STOR-i Centre for Doctoral Training (Grant numbers EP/H023151/1 and EP/L015692/1). Rohrbeck also acknowledges funding by the Faculty of Science and Technology, Lancaster University. The authors also acknowledge sponsorship of EDF Energy (P. Sharkey), Shell Research (R. Shooter), JBA Risk Management (A. Barlow) and the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101) (P. Sharkey). The authors also extend their thanks to Jonathan Tawn and the referees for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Barlow, A.M., Rohrbeck, C., Sharkey, P. et al. A Bayesian spatio-temporal model for precipitation extremes—STOR team contribution to the EVA2017 challenge. Extremes 21, 431–439 (2018). https://doi.org/10.1007/s10687-018-0330-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10687-018-0330-z
Keywords
- Bayesian hierarchical modelling
- Extreme value analysis
- Markov chain Monte Carlo
- Precipitation extremes
- Spatio-temporal dependence