Skip to main content
Log in

INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the \(99.8\%\) level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972–2016. Capitalizing on INLA’s fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bacro, J.N., Gaetan, C., Opitz, T., Toulemonde, G.: Hierarchical space-time modeling of exceedances with an application to rainfall data, arXiv:1708.02447 (2017)

  • Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)

    Article  MathSciNet  Google Scholar 

  • Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  • Bopp, G.P., Shaby, B.A.: An exponential–gamma mixture model for extreme Santa Ana winds. Environmetrics 28(8), e2476 (2017)

    Article  MathSciNet  Google Scholar 

  • Casson, E., Coles, S.: Spatial regression models for extremes. Extremes 1(4), 449–468 (1999)

    Article  Google Scholar 

  • Castro Camilo, D., Huser, R.: Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes, arXiv:1710.00875 (2017)

  • Chavez-Demoulin, V., Davison, A.C.: Generalized additive modelling of sample extremes. J. R. Stat. Soc.: Ser. C: Appl. Stat. 54(1), 207–222 (2005)

    Article  MathSciNet  Google Scholar 

  • Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)

    Book  Google Scholar 

  • Coles, S.G., Tawn, J.A.: Modelling extremes of the areal rainfall process. J. R. Stat. Soc.: Ser. B: Stat. Methodol. 58(2), 329–347 (1996)

    MathSciNet  MATH  Google Scholar 

  • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824–840 (2007)

    Article  MathSciNet  Google Scholar 

  • Daouia, A., Girard, S., Stupfler, G.: Estimation of tail risk based on extreme expectiles. J. R. Stat. Soc.: Ser. B: Stat. Methodol. 80(2), 263–292 (2018)

    Article  MathSciNet  Google Scholar 

  • Davis, R.A., Klüppelberg, C., Steinkohl, C.: Max-stable processes for modeling extremes observed in space and time. J. Kor. Stat. Soc. 42(3), 399–414 (2013)

    Article  MathSciNet  Google Scholar 

  • Davison, A.C., Huser, R.: Statistics of extremes. Annu. Rev. Stat. Appl. 2, 203–235 (2015)

    Article  Google Scholar 

  • Davison, A.C., Ramesh, N.: Local likelihood smoothing of sample extremes. J. R. Stat. Soc.: Ser. B: Stat. Methodol. 62(1), 191–208 (2000)

    Article  MathSciNet  Google Scholar 

  • Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc.: Ser. B: Stat. Methodol. 52(3), 393–442 (1990)

    MATH  Google Scholar 

  • Hosking, J.R., Wallis, J.R.: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)

    Article  MathSciNet  Google Scholar 

  • Huser, R., Davison, A.C.: Space-time modelling of extreme events. J. R. Stat. Soc.: Ser. B: Stat. Methodol. 76(2), 439–461 (2014)

    Article  MathSciNet  Google Scholar 

  • Huser, R., Wadsworth, J.L.: Modeling spatial processes with unknown extremal dependence. J. Am. Stat. Assoc. To appear (2018)

  • Huser, R., Opitz, T., Thibaud, E.: Bridging asymptotic independence and dependence in spatial extremes using gaussian scale mixtures. Spatial Stat. 21(A), 166–186 (2017)

    Article  MathSciNet  Google Scholar 

  • Jonathan, P., Randell, D., Wu, Y., Ewans, K.: Return level estimation from non-stationary spatial data exhibiting multidimensional covariate effects. Ocean Eng. 88, 520–532 (2014)

    Article  Google Scholar 

  • Katz, R.W., Parlange, M., Naveau, P.: Extremes in hydrology. Adv. Water Resour. 25(8–12), 1287–1304 (2002)

    Article  Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Lindgren, F.K., Rue, H.: A note on the second order random walk model for irregular locations. Scand. J. Stat. 35(4), 691–700 (2008)

    Article  Google Scholar 

  • Lindgren, F.K., Rue, H.: Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63(19), 1–25 (2015)

    Article  Google Scholar 

  • Lindgren, F.K., Rue, H, Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach (with discussion). J. R. Stat. Soc.: Ser. B: Stat. Methodol. 73(4), 423–498 (2011)

    Article  MathSciNet  Google Scholar 

  • Martins, T.G., Simpson, D.P., Lindgren, F.K., Rue, H.: Bayesian computing with INLA: new features. Comput. Stat. Data Anal. 67, 68–83 (2013)

    Article  MathSciNet  Google Scholar 

  • Naveau, P., Huser, R., Ribereau, P., Hannart, A.: Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resour. Res. 52(4), 2753–2769 (2016)

    Article  Google Scholar 

  • Northrop, P.J., Jonathan, P.: Threshold modelling of spatially-dependent non-stationary extremes with application to hurricane-induced wave heights (with discussion). Environmetrics 22(7), 799–809 (2011)

    Article  MathSciNet  Google Scholar 

  • Opitz, T.: Latent Gaussian modeling and INLA: a review with focus on space-time applications. J. French Statistical Society 158(3), 62—85 (2017)

    MathSciNet  MATH  Google Scholar 

  • Papastathopoulos, I., Tawn, J.A.: Extended generalised Pareto models for tail estimation. Journal of Statistical Planning and Inference 143(1), 131–143 (2013)

    Article  MathSciNet  Google Scholar 

  • Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3 (1), 119–131 (1975)

    Article  MathSciNet  Google Scholar 

  • Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, London (2005)

    Book  Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. (Ser. B) 71(2), 319–392 (2009)

    Article  MathSciNet  Google Scholar 

  • Rue, H., Riebler, A., Sørbye, S.H., Illian, J.B., Simpson, D.P., Lindgren, F.K.: Bayesian computing with INLA: A review. Annu. Rev. Stat. Appl. 4, 395–421 (2017)

    Article  Google Scholar 

  • Scarrott, C., MacDonald, A.: A review of extreme value threshold estimation and uncertainty quantification. REVSTAT 10(1), 33–60 (2012)

    MathSciNet  MATH  Google Scholar 

  • Simpson, D.P., Rue, H., Riebler, A., Martins, T.G., Sørbye, S.H.: Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science 32(1), 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  • Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Book  Google Scholar 

  • Thibaud, E., Opitz, T.: Efficient inference and simulation for elliptical Pareto processes. Biometrika 102(4), 855–870 (2015)

    Article  MathSciNet  Google Scholar 

  • Thibaud, E., Mutzner, R., Davison, A.C.: Threshold modeling of extreme spatial rainfall. Water Resources Research 49(8), 4633–4644 (2013)

    Article  Google Scholar 

  • Tierney, L., Kadane, J.B.: Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81(393), 82–86 (1986)

    Article  MathSciNet  Google Scholar 

  • Turkman, K.F., Turkman, M.A.A., Pereira, J.M.: Asymptotic models and inference for extremes of spatio-temporal data. Extremes 13(4), 375–397 (2010)

    Article  MathSciNet  Google Scholar 

  • Wadsworth, J.L., Tawn, J.A.: Dependence modelling for spatial extremes. Biometrika 99(2), 253–272 (2012)

    Article  MathSciNet  Google Scholar 

  • Wilks, D.: Statistical Methods in the Atmospheric Sciences. Elsevier, Oxford (2006)

    Google Scholar 

  • Wintenberger, O.: Editorial: special issue on the Extreme Value Analysis conference challenge “Prediction of extremal precipitation”. Extremes To appear (2018)

Download references

Acknowledgements

We thank Olivier Wintenberger for organizing the competition for the 10th International Conference on Extreme-Value Analysis. This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3434. Support from the KAUST Supercomputing Laboratory and access to Shaheen II is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Huser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opitz, T., Huser, R., Bakka, H. et al. INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes 21, 441–462 (2018). https://doi.org/10.1007/s10687-018-0324-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-018-0324-x

Keywords

AMS 2000 Subject Classifications

Navigation