Skip to main content
Log in

The MELBS team winning entry for the EVA2017 competition for spatiotemporal prediction of extreme rainfall using generalized extreme value quantiles

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We present our winning entry for the EVA2017 challenge on spatiotemporal prediction of extreme precipitation. The aim of the competition is to predict extreme rainfall quantiles that score as low as possible on the competition error metric. Good or bad predictions are defined only by the metric used. Our methodology was simple and produced accurate predictions under this metric. This outcome emphasizes the importance of cross-validation and identifying model over-fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apputhurai, P., Stephenson, A.G.: Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields. Environ. Ecol. Stat. 20, 667–677 (2013)

    Article  MathSciNet  Google Scholar 

  • Bergmeir, C., Hyndman, R.J., Koo, B.: A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 120, 70–83 (2018)

    Article  MathSciNet  Google Scholar 

  • Bücher, A., Segers, J.: On the maximum likelihood estimator for the generalized extreme-value distribution. Extremes 20, 839–872 (2017)

    Article  MathSciNet  Google Scholar 

  • Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)

    Book  Google Scholar 

  • Coles, S., Pericchi, L.R., Sisson, S.: A fully probabilistic approach to extreme rainfall modeling. J. Hydrol. 273, 35–50 (2003)

    Article  Google Scholar 

  • Deidda, R., Puliga, M.: Sensitivity of goodness-of-fit statistics to rainfall data rounding off. Phys. Chem. Earth, Parts A/B/C 31, 1240–1251 (2006)

    Article  Google Scholar 

  • Efron, B., Tibshirani, R.: Improvements on cross-validation: the.632 + bootstrap method. J. Am. Stat. Assoc. 92, 548–560 (1997)

    MathSciNet  MATH  Google Scholar 

  • Ferro, C.A., Segers, J.: Inference for clusters of extreme values. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 65, 545–556 (2003)

    Article  MathSciNet  Google Scholar 

  • Gaetan, C., Grigoletto, M.: A hierarchical model for the analysis of spatial rainfall extremes. J. Agric. Biol. Environ. Stat. 12, 434–449 (2007)

    Article  MathSciNet  Google Scholar 

  • Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2016)

    MATH  Google Scholar 

  • Huser, R., Davison, A.: Space–time modelling of extreme events. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 76, 439–461 (2014)

    Article  MathSciNet  Google Scholar 

  • Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2013)

  • Jenkinson, A.F.: The frequency distribution of the annual maximum (or minimum) of meteorological elements. Q. J. R. Meteorol. Soc. 81, 158–171 (1955)

    Article  Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Lehmann, E.A., Phatak, A., Stephenson, A.G., Lau, R.: Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change. Environmetrics 27, 239–251 (2016)

    Article  MathSciNet  Google Scholar 

  • Li, Y., Cai, W., Campbell, E.: Statistical modeling of extreme rainfall in southwest western australia. J. Clim. 18, 852–863 (2005)

    Article  Google Scholar 

  • Pickands, J. III.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)

    Article  MathSciNet  Google Scholar 

  • Smith, R.L.: Maximum likelihood estimation in a class of non-regular cases. Biometrika 72, 67–90 (1985)

    Article  MathSciNet  Google Scholar 

  • Stephenson, A.G., Lehmann, E.A., Phatak, A.: A max-stable process model for rainfall extremes at different accumulation durations. Weather Clim. Extrem. 13, 44–53 (2016)

    Article  Google Scholar 

  • Thibaud, E., Mutzner, R., Davison, A.C.: Threshold modeling of extreme spatial rainfall. Water Resour. Res. 49, 4633–4644 (2013)

    Article  Google Scholar 

  • Westra, S., Sisson, S.A.: Detection of non-stationarity in precipitation extremes using a max-stable process model. J. Hydrol. 406, 119–128 (2011)

    Article  Google Scholar 

  • Wintenberger, O.: Editorial: special issue on the Extreme Value Analysis conference challenge “Prediction of extremal precipitation”. Extremes. To Appear (2018)

  • Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Cambridge (2017)

    Google Scholar 

  • Zheng, F., Thibaud, E., Leonard, M., Westra, S.: Assessing the performance of the independence method in modeling spatial extreme rainfall. Water Resour. Res. 51, 7744–7758 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the organizing committee of the 10th international conference on Extreme Value Analysis, and Olivier Wintenberger for organizing the prediction challenge. Laleh Tafakori and Kate Saunders would like to thank the Australian Research Council for supporting this work through Laureate Fellowship FL130100039. The authors also acknowledge the support of The Australian Research Council Center of Excellence for Mathematical and Statistical Frontiers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alec G. Stephenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephenson, A.G., Saunders, K. & Tafakori, L. The MELBS team winning entry for the EVA2017 competition for spatiotemporal prediction of extreme rainfall using generalized extreme value quantiles. Extremes 21, 477–484 (2018). https://doi.org/10.1007/s10687-018-0321-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-018-0321-0

Keywords

Navigation