Is human life limited or unlimited? (A discussion of the paper by Holger Rootzén and Dmitrii Zholud)


We thank Holger Rootzén and Dmitrii Zholud’s for their stimulating work, that led us to further investigate the problem of best fitting the human life span distribution. Their assertion “human life is unlimited but short” is based on their conclusion that the exponential model is the best to fit. We provide results based on standard Extreme Value approaches, the Block Maxima and Peaks-over-Threshold, and on the whole data available in the IDL database (IDL A, B validations and GRG). We verify that negative values for the extreme value index are more likely, supporting the conclusion that models with finite endpoint seem better to fit to the human life span distribution.

This is a preview of subscription content, access via your institution.


  1. Aarssen, K., de Haan, L.: On the maximal life span of humans. Math. Popul. Stud. 4(4), 259–81 (1994)

    Article  Google Scholar 

  2. Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2, 792–804 (1974)

    MathSciNet  Article  Google Scholar 

  3. Baringa, M.: How long is the human life-span?. Science 254, 936–938 (1991)

    Article  Google Scholar 

  4. Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Statist. 17, 1833–1855 (1989)

    MathSciNet  Article  Google Scholar 

  5. Dombry, C., Ferreira, A.: Maximum likelihood estimators based on the block maxima method. Bernoulli: to appear (2018)

  6. de Haan, L., Ferreira, A.: Extreme Value Theory: an Introduction. Springer, Boston (2006)

    Book  Google Scholar 

  7. Einmahl, J., Einmahl, J., de Haan, L.: Limits to Human Life Span Through Extreme Value Theory. Center Discussion Paper Series No. 2017-051. CentER, Center for Economic Research, Tilburg (2017)

    Google Scholar 

  8. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Cambridge Philos. Soc. 24, 180–190 (1928)

    Article  Google Scholar 

  9. Gavrilov, L.A., Gavrilova, N.S.: The Biology of Life Span: A Quantitative Approach. Harwood, New York (1991)

    Google Scholar 

  10. Gilleland, E., Katz, R.W.: extRemes 2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 72, 1–39 (2016)

    Article  Google Scholar 

  11. Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    MathSciNet  Article  Google Scholar 

  12. Li, J., Hardy, M., Tan, K.S.: Threshold life tables and their applications. North Am. Actuarial J. 12(2), 99–115 (2008)

    MathSciNet  Article  Google Scholar 

  13. Pickands, J.: Statistical inference using extreme order statistics. Ann. Statist. 3, 119–131 (1975)

    MathSciNet  Article  Google Scholar 

  14. Rootzén, H., Zholud, D.: Human life is unlimited – but short. Extremes 20, 713–728 (2017)

    MathSciNet  Article  Google Scholar 

  15. Thatcher, A.R.: The long-term pattern of adult mortality and the highest attained age. J. R. Stat. Soc. Ser. A 162(Part 1), 5–43 (1999)

    Article  Google Scholar 

  16. Watts, K.A., Dupuis, D.J., Jones, B.L.: An extreme value analysis of advanced age mortality data. North Am. Actuarial J. 10(4), 162–178 (2006)

    MathSciNet  Article  Google Scholar 

Download references


We thank Laurens de Haan, Ross Maller and Sidney Resnick for their careful reading and comments, and Thomas Mikosch for the opportunity to contribute to this discussion.

This research was partially funded by FCT - Fundacão para a Ciência e a Tecnologia, Portugal, UID/MAT/00006/2013 and UID/Multi/04621/2013.

Author information



Corresponding author

Correspondence to A. Ferreira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A., Huang, F. Is human life limited or unlimited? (A discussion of the paper by Holger Rootzén and Dmitrii Zholud). Extremes 21, 373–382 (2018).

Download citation


  • Peaks-Over-Threshold (POT)
  • Block Maxima (BM)
  • Human lifespan distribution
  • Extreme value index and endpoint estimation

AMS 2000 Subject Classifications

  • 62G32
  • 62P05
  • 62P10