, Volume 21, Issue 3, pp 373–382 | Cite as

Is human life limited or unlimited? (A discussion of the paper by Holger Rootzén and Dmitrii Zholud)

  • A. Ferreira
  • F. Huang


We thank Holger Rootzén and Dmitrii Zholud’s for their stimulating work, that led us to further investigate the problem of best fitting the human life span distribution. Their assertion “human life is unlimited but short” is based on their conclusion that the exponential model is the best to fit. We provide results based on standard Extreme Value approaches, the Block Maxima and Peaks-over-Threshold, and on the whole data available in the IDL database (IDL A, B validations and GRG). We verify that negative values for the extreme value index are more likely, supporting the conclusion that models with finite endpoint seem better to fit to the human life span distribution.


Peaks-Over-Threshold (POT) Block Maxima (BM) Human lifespan distribution Extreme value index and endpoint estimation 

AMS 2000 Subject Classifications

62G32 62P05 62P10 



We thank Laurens de Haan, Ross Maller and Sidney Resnick for their careful reading and comments, and Thomas Mikosch for the opportunity to contribute to this discussion.

This research was partially funded by FCT - Fundacão para a Ciência e a Tecnologia, Portugal, UID/MAT/00006/2013 and UID/Multi/04621/2013.


  1. Aarssen, K., de Haan, L.: On the maximal life span of humans. Math. Popul. Stud. 4(4), 259–81 (1994)CrossRefGoogle Scholar
  2. Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2, 792–804 (1974)MathSciNetCrossRefGoogle Scholar
  3. Baringa, M.: How long is the human life-span?. Science 254, 936–938 (1991)CrossRefGoogle Scholar
  4. Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Statist. 17, 1833–1855 (1989)MathSciNetCrossRefGoogle Scholar
  5. Dombry, C., Ferreira, A.: Maximum likelihood estimators based on the block maxima method. Bernoulli: to appear (2018)Google Scholar
  6. de Haan, L., Ferreira, A.: Extreme Value Theory: an Introduction. Springer, Boston (2006)CrossRefGoogle Scholar
  7. Einmahl, J., Einmahl, J., de Haan, L.: Limits to Human Life Span Through Extreme Value Theory. Center Discussion Paper Series No. 2017-051. CentER, Center for Economic Research, Tilburg (2017)Google Scholar
  8. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Cambridge Philos. Soc. 24, 180–190 (1928)CrossRefGoogle Scholar
  9. Gavrilov, L.A., Gavrilova, N.S.: The Biology of Life Span: A Quantitative Approach. Harwood, New York (1991)Google Scholar
  10. Gilleland, E., Katz, R.W.: extRemes 2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 72, 1–39 (2016)CrossRefGoogle Scholar
  11. Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)MathSciNetCrossRefGoogle Scholar
  12. Li, J., Hardy, M., Tan, K.S.: Threshold life tables and their applications. North Am. Actuarial J. 12(2), 99–115 (2008)MathSciNetCrossRefGoogle Scholar
  13. Pickands, J.: Statistical inference using extreme order statistics. Ann. Statist. 3, 119–131 (1975)MathSciNetCrossRefGoogle Scholar
  14. Rootzén, H., Zholud, D.: Human life is unlimited – but short. Extremes 20, 713–728 (2017)MathSciNetCrossRefGoogle Scholar
  15. Thatcher, A.R.: The long-term pattern of adult mortality and the highest attained age. J. R. Stat. Soc. Ser. A 162(Part 1), 5–43 (1999)CrossRefGoogle Scholar
  16. Watts, K.A., Dupuis, D.J., Jones, B.L.: An extreme value analysis of advanced age mortality data. North Am. Actuarial J. 10(4), 162–178 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Superior Técnicoda Universidade de LisboaLisbonPortugal
  2. 2.Research School of Finance, Actuarial Studies & StatisticsAustralian National UniversityCanberraAustralia

Personalised recommendations