Extreme value estimation for discretely sampled continuous processes


In environmental applications of extreme value statistics, the underlying stochastic process is often modeled either as a max-stable process in continuous time/space or as a process in the domain of attraction of such a max-stable process. In practice, however, the processes are typically only observed at discrete points and one has to resort to interpolation to fill in the gaps. We discuss the influence of such an interpolation on estimators of marginal parameters as well as estimators of the exponent measure. In particular, natural conditions on the fineness of the observational scheme are developed which ensure that asymptotically the interpolated estimators behave in the same way as the estimators which use fully observed continuous processes.

This is a preview of subscription content, log in to check access.


  1. Adler, R.J.: An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. IMS Lecture Notes, vol. 12 (1990)

  2. Albin, J.M.P.: On extremal theory for stationary processes. Ann. Probab. 18, 92–128 (1990)

    MathSciNet  Article  Google Scholar 

  3. Buhl, S., Klüppelberg, C.: Anisotropic Brown-Resnick space-time processes: estimation and model assessment. Extremes 19, 627–660 (2016)

    MathSciNet  Article  Google Scholar 

  4. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods. Springer (2003)

  5. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, Vol. II: General Theory and Structure. Springer (2008)

  6. de Haan, L., Ferreira, A.: Extreme value theory. Springer (2006)

  7. de Haan, L., Lin, T.: Weak consistency of extreme value estimators in C[0, 1]. Ann. Statist. 31, 1996–2012 (2003)

    MathSciNet  Article  Google Scholar 

  8. de Haan, L., Pereira, T.T.: Spatial extremes: models for the stationary case. Ann. Statist. 34, 146–168 (2006)

    MathSciNet  Article  Google Scholar 

  9. Dombry, C., Éyi-Minko, F., Ribatet, M.: Conditional simulation of max-stable processes. Biometrika 100, 111–124 (2013)

    MathSciNet  Article  Google Scholar 

  10. Drees, H.: Extreme Quantile estimation for dependent data with applications to finance. Bernoulli 9, 617–657 (2003)

    MathSciNet  Article  Google Scholar 

  11. Einmahl, J.H.J., Lin, T.: Asymptotic normality of extreme value estimators on C[0, 1]. Ann. Statist. 34, 469–492 (2006)

    MathSciNet  Article  Google Scholar 

  12. Falk, M., Hofmann, M., Zott, M.: On generalized max-linear models and their statistical interpolation. J. Appl. Probab. 52, 736–751 (2015)

    MathSciNet  Article  Google Scholar 

  13. Fuentes, M., Henry, J., Reich, B.: Nonparametric spatial models for extremes: application to extreme temperature data. Extremes 16, 75–101 (2013)

    MathSciNet  Article  Google Scholar 

  14. Genton, M.G., Padoan, S.A., Dang, H.: Multivariate max-stable spatial processes. Biometrika 102, 215–230 (2015)

    MathSciNet  Article  Google Scholar 

  15. Lehmann, E.A., Phatak, A., Stephenson, A.G., Lau, R.: Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change. Environmetrics 27, 239–251 (2016)

    MathSciNet  Article  Google Scholar 

  16. Oesting, M., Schlather, M.: Conditional sampling for max-stable processes with a mixed moving maxima representation. Extremes 17, 157–192 (2014)

    MathSciNet  Article  Google Scholar 

  17. Oesting, M., Schlather, M., Friederichs, P.: Statistical post-processing of forecasts for extremes using bivariate brown-resnick processes with an application to wind gusts. Extremes 20, 309–332 (2017)

    MathSciNet  Article  Google Scholar 

  18. Piterbarg, V.I.: Discrete and continuous time extremes of Gaussian processes. Extremes 7, 161—177 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Turkman, K.F.: Discrete and continuous time extremes of stationary processes. In: Turkman, K.F (ed.) , vol. 30, pp. 565–581. Elsevier (2012)

  20. Wang, Y., Stoev, S.A.: Conditional sampling for spectrally discrete max-stable random fields. Adv. Appl. Probab. 43, 461–483 (2011)

    MathSciNet  Article  Google Scholar 

Download references


L. de Haan and F. Turkman have been partly funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013. H. Drees has been partly supported by DFG project DR 271/6-2 within the research unit FOR 1735. We thank two anonymous referees whose constructive remarks led to an improvement of the presentation.

Author information



Corresponding author

Correspondence to Holger Drees.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drees, H., de Haan, L. & Turkman, F. Extreme value estimation for discretely sampled continuous processes. Extremes 21, 533–550 (2018). https://doi.org/10.1007/s10687-018-0313-0

Download citation


  • Discrete and continuous sampling
  • Interpolation
  • Max-stable process

AMS 2000 Subject Classifications

  • Primary—62G32
  • Secondary—62G05, 62M30