Abstract
The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.
Similar content being viewed by others
References
Bacro, J.N., Gaetan, C.: Estimation of spatial max-stable models using threshold exceedances. Stat. Comput. 24(4), 651–662 (2014). doi:10.1007/s11222-013-9394-4
Balkema, A.A., Resnick, S.I.: Max-Infinite divisibility. J. Appl. Probab. 14 (2), 309–319 (1977)
Ballani, F., Schlather, M.: A construction principle for multivariate extreme value distributions. Biometrika 98(3), 633–645 (2011). doi:10.1093/biomet/asr034
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley, Chichester (2004)
Boldi, M.O., Davison, A.C.: A mixture model for multivariate extremes. J. R. Stat. Soc. Ser. B (Stat Methodol.) 69(2), 217–229 (2007). doi:10.1111/j.1467-9868.2007.00585.x
Bortot, P, Coles, SG, Tawn, JA: The multivariate Gaussian tail model: an application to oceanographic data. J. R. Stat. Soc.: Ser. C: Appl. Stat. 49(1), 31–49 (2000). doi:10.1111/1467-9876.00177
Buishand, T.A., de Haan, L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Stat. 2(2), 624–642 (2008). doi:10.1214/08-AOAS159
Capéraà, P., Fougères, A.L., Genest, C.: A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3), 567–577 (1997). doi:10.1093/biomet/84.3.567
Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)
Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B (Stat Methodol.) 53(2), 377–392 (1991) http://www.jstor.org/stable/2345748
Coles, S.G., Tawn, J.A.: Statistical methods for multivariate extremes: an application to structural design. J. R. Stat. Soc.: Ser. C: Appl. Stat. 43(1), 1–48 (1994). doi:10.2307/2986112
Cox, D.R., Reid, N.: A note on pseudolikelihood constructed from marginal densities. Biometrika 91(3), 729–737 (2004). doi:10.1093/biomet/91.3.729
Davis, R.A., Yau, C.Y.: Comments on pairwise likelihood in time series models. Stat. Sin. 21, 255–277 (2011) http://www3.stat.sinica.edu.tw/statistica/ j21n1/j21n111/j21n111.html
Davison, A.C.: Statistical Models. Cambridge University Press, New York (2003)
Davison, A.C., Gholamrezaee, M.M.: Geostatistics of extremes. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2138), 581–608 (2012). doi:10.1098/rspa.2011.0412
Davison, A.C., Huser, R.: Statistics of extremes. Annu. Rev. Stat. Appl. 2, 203–235 (2015)
Davison, A.C., Smith, RL: Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc. Ser. B (Stat Methodol.) 52(3), 393–442 (1990) http://www.jstor.org/stable/2345667
Deheuvels, P.: On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Stat. Probabil. Lett. 12(5), 429–439 (1991). doi:10.1016/0167-7152(91)90032-M
Deheuvels, P., Tiago de Oliveira, J.: On the non-parametric estimation of the bivariate extreme-value distributions. Stat. Probabil. Lett. 8(4), 315–323 (1989). doi:10.1016/0167-7152(89)90038-2
Demarta, S., McNeil, A.J.: The t copula and related copulas. Int. Stat. Rev. 73(1), 111–129 (2005). doi:10.1111/j.1751-5823.2005.tb00254.x
Falk, M., Reiss, R.D.: Estimation of canonical dependence parameters in a class of bivariate peaks-over-threshold models. Stat. Probabil. Lett. 52(3), 233–242 (2001). doi:10.1016/S0167-7152(00)00194-2
Falk, M., Reiss, R.D.: A characterization of the rate of convergence in bivariate extreme value models. Stat. Probabil. Lett. 59(4), 341–351 (2002). doi:10.1016/S0167-7152(02)00209-2
Falk, M., Reiss, R.D.: Efficient estimation of the canonical dependence function. Extremes 6(1), 61–82 (2003a). doi:10.1023/A:1026229314063
Falk, M., Reiss, R.D.: Efficient estimators and LAN in canonical bivariate POT models. J. Multivar. Anal. 84(1), 190–207 (2003b). doi:10.1016/S0047-259X(02)00010-6
Falk, M., Reiss, R.D.: On the distribution of Pickands coordinates in bivariate EV and GP models. J. Multivar. Anal. 93(2), 267–295 (2005). doi:10.1016/j.jmva.2004.02.017
Ferrez, J., Davison, A.C., Rebetez, M.: Extreme temperature analysis under forest cover compared to an open field. Agric. For. Meteorol. 151(7), 992–1001 (2011). doi:10.1016/j.agrformet.2011.03.005
Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24(2), 180–190 (1928). doi:10.1017/S0305004100015681
Fougères, A.L.: Multivariate extremes. In: Finkenstädt, B., Rootzén, H. (eds.) Extreme Values in Finance, Telecommunications, and the Environment. Chapman & Hall, London (2004), doi:10.1201/9780203483350.ch7
Fougères, A.L., Nolan, J.P., Rootzén, H.: Models for dependent extremes using stable mixtures. Scand. J. Stat. 36(1), 42–59 (2009). doi:10.1111/j.1467-9469.2008.00613.x
Gumbel, E.J.: Bivariate logistic distributions. J. Am. Stat. Assoc. 56(294), 335–349 (1961) http://www.jstor.org/stable/2282259
Hall, P., Tajvidi, N.: Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6(5), 835–844 (2000) http: //projecteuclid.org/euclid.bj/1081282691
Hjort, N.L., Varin, C.: ML, PL, QL in Markov chain models. Scand. J. Stat. 35(1), 64–82 (2008). doi:10.1111/j.1467-9469.2007.00559.x
Hofert, M, Kojadinovic, I, Maechler, M, Yan, J: copula: Multivariate dependence with copulas. R package version 0.999-13. http://CRAN.R-project.org/package=copula (2015)
Huser, R.: Statistical Modeling and Inference for Spatio-Temporal Extremes. PhD thesis, École Polytechnique Fédérale de Lausanne (2013)
Huser, R., Davison, A.C.: Composite likelihood estimation for the Brown–Resnick process. Biometrika 100(2), 511–518 (2013). doi:10.1093/biomet/ass089
Huser, R., Davison, A.C.: Space-time modelling of extreme events. J. R. Stat. Soc. Ser. B (Stat Methodol.) 76(2), 439–461 (2014). doi:10.1111/rssb.12035
Hüsler, J., Reiss, R.D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probabil. Lett. 7(4), 283–286 (1989). doi:10.1016/0167-7152(89)90106-5
Joe, H.: Families of min-stable multivariate exponential and multivariate extreme value distributions. Stat. Probabil. Lett. 9(1), 75–81 (1990). doi:10.1016/0167-7152(90)90098-R
Joe, H., Smith, R.L., Weissman, I.: Bivariate threshold methods for extremes. J. R. Stat. Soc. Ser. B (Stat Methodol.) 54(1), 171–183 (1992) http://www.jstor.org/stable/2345953
Ledford, A.W., Tawn, J.A.: Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187 (1996). doi:10.1093/biomet/83.1.169
Lindsay, B.G.: Composite likelihood methods. Contemp. Math. 80, 221–239 (1988)
Michel, R.: Parametric estimation procedures in multivariate generalized Pareto models. Scand. J. Stat. 36(1), 60–75 (2009). doi:10.1111/j.1467-9469.2008.00619.x
Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)
Padoan, S.A., Ribatet, M., Sisson, S.A.: Likelihood-Based inference for max-stable processes. J. Am. Stat. Assoc. 105(489), 263–277 (2010). doi:10.1198/jasa.2009.tm08577
Pickands, J.: Multivariate extreme value distributions (with discussion). In: Bulletin de l’Institut International de Statistique, vol. 49, pp 859–878, 894–902 (1981)
Reich, B.J., Shaby, B.A.: A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat. 6(4), 1430–1451 (2012). doi:10.1214/12-AOAS591
Renard, D., Molenberghs, G., Geys, H.: A pairwise likelihood approach to estimation in multilevel probit models. Comput. Stat. Data Anal. 44(4), 649–667 (2004). doi:10.1016/S0167-9473(02)00263-3
Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer, New York (1987)
Rootzén, H., Tajvidi, N.: Multivariate generalized Pareto distributions. Bernoulli 12(5), 917–930 (2006). doi:10.3150/bj/1161614952
Sabourin, A., Naveau, P.: Bayesian Dirichlet mixture model for multivariate extremes: a re-parametrization. Comput. Stat. Data Anal. 71, 542–567 (2014). doi:10.1016/j.csda.2013.04.021
Segers, J.: Max-stable models for multivariate extremes. REVSTAT 10(1), 61–82 (2012)
Shi, D.: Fisher information for a multivariate extreme value distribution. Biometrika 82(3), 644–649 (1995). doi:10.1093/biomet/82.3.644
Smith, R.L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Stat. Sci. 4(4), 367–377 (1989). doi:10.1214/ss/1177012400
Smith, R.L. Max-stable processes and spatial extremes. http://www.stat.unc.edu/postscript/rs/spatex.pdf, unpublished (1990)
Smith, R.L., Tawn, J.A., Yuen, H.K.: Statistics of multivariate extremes. Int. Stat. Rev. 58(1), 47–58 (1990)
Smith, R.L., Tawn, J.A., Coles, S.G.: Markov chain models for threshold exceedances. Biometrika 84(2), 249–268 (1997). doi:10.1093/biomet/84.2.249
Stephenson, A.: High-Dimensional parametric modelling of multivariate extreme events. Aust. N. Z. J. Stat. 51(1), 77–88 (2009). doi:10.1111/j.1467-842X.2008.00528.x
Stephenson, A., Tawn, J.A.: Exploiting occurrence times in likelihood inference for componentwise maxima. Biometrika 92(1), 213–227 (2005). doi:10.1093/biomet/92.1.213
Tawn, J.A.: Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415 (1988). doi:10.1093/biomet/75.3.397
Thibaud, E., Opitz, T.: Efficient inference and simulation for elliptical Pareto processes. Biometrika (2015). doi:10.1093/biomet/asv045
Thibaud, E., Mutzner, R., Davison, A.C.: Threshold modeling of extreme spatial rainfall. Water Resour. Res. 49(8), 4633–4644 (2013). doi:10.1002/wrcr.20329
Varin, C., Vidoni, P.: A note on composite likelihood inference and model selection. Biometrika 92(3), 519 –528 (2005). doi:10.1093/biomet/92.3.519
Varin, C., Reid, N., Firth, D.: An overview of composite likelihood methods. Stat. Sin. 21(2011), 5–42 (2011)
Wadsworth, J.L.: On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions. Biometrika 102(3), 705–711 (2015)
Wadsworth, J.L., Tawn, J.A.: Dependence modelling for spatial extremes. Biometrika 99(2), 253–272 (2012). doi:10.1093/biomet/asr080
Wadsworth, J.L., Tawn, J.A.: Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101(1), 1–15 (2014). doi:10.1093/biomet/ast042
Zheng, F., Westra, S., Leonard, M., Sisson, S.A.: Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resour. Res. 50(3), 2050–2071 (2014). doi:10.1002/2013WR014616 10.1002/2013WR014616
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Huser, R., Davison, A.C. & Genton, M.G. Likelihood estimators for multivariate extremes. Extremes 19, 79–103 (2016). https://doi.org/10.1007/s10687-015-0230-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10687-015-0230-4
Keywords
- Asymptotic relative efficiency
- Censored likelihood
- Logistic model
- Multivariate extremes
- Pairwise likelihood
- Point process approach