Abstract
Applying extreme value statistics in meteorology and environmental science requires accurate estimators on extreme value indices that can be around zero. Without having prior knowledge on the sign of the extreme value indices, the probability weighted moment (PWM) estimator is a favorable candidate. As most other estimators on the extreme value index, the PWM estimator bears an asymptotic bias. In this paper, we develop a bias correction procedure for the PWM estimator. Moreover, we provide bias-corrected PWM estimators for high quantiles and, when the extreme value index is negative, the endpoint of a distribution. The choice of k, the number of high order statistics used for estimation, is crucial in applications. The asymptotically unbiased PWM estimators allows the choice of higher level k, which results in a lower asymptotic variance. Moreover, since the bias-corrected PWM estimators can be applied for a wider range of k compared to the original PWM estimator, one gets more flexibility in choosing k for finite sample applications. All advantages become apparent in simulations and an environmental application on estimating “once per 10,000 years” still water level at Hoek van Holland, The Netherlands.
This is a preview of subscription content, access via your institution.
References
Aarssen, K., de Haan, L.: On the maximal life span of humans. Math. Popul. Stud. 4(4), 259–281 (1994)
Beirlant, J., Figueiredo, F., Gomes, M.I., Vandewalle, B.: Improved reduced-bias tail index and quantile estimators. J. Stat. Plan. Inference 138(6), 1851–1870 (2008)
Buishand, T.A., de Haan, L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Stat. 2(2), 624–642 (2008)
Caeiro, F., Gomes, M.I.: A class of asymptotically unbiased semi-parametric estimators of the tail index. Test 11(2), 345–364 (2002)
Caeiro, F., Gomes, M.I.: Minimum-variance reduced-bias tail index and high quantile estimation. REVSTAT–Stat. J. 6(1), 1–20 (2008)
Caeiro, F., Gomes, M.I., Pestana, D.: Direct reduction of bias of the classical Hill estimator. REVSTAT–Stat. J. 3(2), 113–136 (2005)
Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. B: Methodological 53(2), 377–392 (1991)
Coles, S.G., Tawn, J.A.: Modelling extremes of the areal rainfall process. J. R. Stat. Soc. B 58(2), 329–347 (1996)
Coles, S.G., Walshaw, D.: Directional modelling of extreme wind speeds. J. R. Stat. Soc. Ser. C Appl. Stat. 43(1), 139–157 (1994)
Danielsson, J., De Haan, L., Peng, L., De Vries, C.G.: Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivar. Anal. 76(2), 226–248 (2001)
de Haan, L., de Ronde, J.: Sea and wind: multivariate extremes at work. Extremes 1(1), 7–45 (1998)
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer Verlag (2006)
de Haan, L., Rootzén, H.: On the estimation of high quantiles. J. Stat. Plan. Inference 35(1), 1–13 (1993)
de Haan, L., Stadtmüller, U.: Generalized regular variation of second order. J. Aust. Math. Soc. Ser. A 61(3), 381–395 (1996)
Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17(4), 1833–1855 (1989)
Drees, H.: On smooth statistical tail functionals. Scand. J. Statist. 25(1), 187–210 (1998)
Einmahl, J.H.J., Magnus, J.R.: Records in athletics through extreme-value theory. J. Am. Stat. Assoc. 103(484), 1382–1391 (2008)
Feuerverger, A., Hall, P.: Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Stat. 27(2), 760–781 (1999)
Fraga Alves, M.I., de Haan, L., Lin, T.: Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12(2), 155–176 (2003)
Gomes, M.I., Figueiredo, F.: Bias reduction in risk modelling: semi-parametric quantile estimation. Test 15(2), 375–396 (2006)
Gomes, M.I., Martins, M.J.: “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5(1), 5–31 (2002)
Gomes, M.I., Martins, M.J.: Bias reduction and explicit semi-parametric estimation of the tail index. J. Stat. Plan. Inference 124(2), 361–378 (2004)
Gomes, M.I., Pestana, D.: A simple second-order reduced-bias tail index estimator. Stat. Comput. Simul. 77(6), 487–502 (2007a)
Gomes, M.I., Pestana, D.: A sturdy reduced-bias extreme quantile (VaR) estimator. J. Am. Stat. Assoc. 102(477), 280–292 (2007b)
Gomes, M.I., Martins, M.J., Neves, M.: Alternatives to a semi-parametric estimator of parameters of rare events—the jackknife methodology. Extremes 3(3), 207–229 (2000)
Gomes, M.I., Haan, L., Peng, L.: Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5(4), 387–414 (2002a)
Gomes, M.I., Martins, M.J., Neves, M.: Generalized jackknife semi-parametric estimators of the tail index. Port. Math. 59(4), 393–408 (2002b)
Gomes, M.I., Caeiro, F., Figueiredo, F.: Bias reduction of a tail index estimator through an external estimation of the second-order parameter. Statistics 38(6), 497–510 (2004)
Gomes, M.I., Pereira, H., Miranda, M.C.: Revisiting the role of the jackknife methodology in the estimation of a positive tail index. Commun. Stat. Theory Methods 34(2), 319–335 (2005)
Gomes, M.I., Martins, M.J., Neves, M.: Improving second order reduced bias extreme value index estimation. REVSTAT–Stat. J. 5(2), 177–207 (2007a)
Gomes, M.I., Miranda, C., Viseu, C.: Reduced-bias tail index estimation and the jackknife methodology. Stat. Neerl. 61(2), 243–270 (2007b)
Gomes, M.I., de Haan, L., Rodrigues, L.H.: Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses. J. R. Stat. Soc. B: Methodology 70(1), 31–52 (2008)
Hall, P.: On estimating the endpoint of a distribution. Ann. Stat. 10(2), 556–568 (1982)
Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69(346), 383–393 (1974)
Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. stat. 3(5), 1163–1174 (1975)
Hosking, J.R.M., Wallis, J.R.: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)
Li, D., Peng, L.: Does bias reduction with external estimator of second order parameter work for endpoint? J. Stat. Plan. Inference 139(6), 1937–1952 (2009)
Li, D., Peng, L., Yang, J.: Bias reduction for high quantiles. J. Stat. Plan. Inference 140(9), 2433–2441 (2010)
Li, D., Peng, L., Xu, X.: Bias reduction for endpoint estimation. Extremes 14(4), 393–412 (2011)
Matthys, G., Delafosse, E., Guillou, A., Beirlant, J.: Estimating catastrophic quantile levels for heavy-tailed distributions. Insur., Math. Econ. 34(3), 517–537 (2004)
Peng, L.: Asymptotically unbiased estimators for the extreme-value index. Stat. Probab. Lett. 38(2), 107–115 (1998)
Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424), 1273–1283 (1993)
Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 15(3), 1174–1207 (1987)
Weissman, I.: Estimation of parameters and larger quantiles based on the k largest observations. J. Am. Stat. Assoc. 73(364), 812–815 (1978)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research of J.-J. Cai and L. de Haan are partially supported by ENES-Project PTDC/MAT/112770/2009.
Rights and permissions
About this article
Cite this article
Cai, JJ., de Haan, L. & Zhou, C. Bias correction in extreme value statistics with index around zero. Extremes 16, 173–201 (2013). https://doi.org/10.1007/s10687-012-0158-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10687-012-0158-x
Keywords
- The probability weighted moment estimator
- Extreme value index
- Bias correction
- High quantile estimation
- Endpoint estimation
AMS 2000 Subject Classification
- 62G32