A software review for extreme value analysis

Abstract

Extreme value methodology is being increasingly used by practitioners from a wide range of fields. The importance of accurately modeling extreme events has intensified, particularly in environmental science where such events can be seen as a barometer for climate change. These analyses require tools that must be simple to use, but must also implement complex statistical models and produce resulting inferences. This document presents a review of the software that is currently available to scientists for the statistical modeling of extreme events. We discuss all software known to the authors, both proprietary and open source, targeting different data types and application areas. It is our intention that this article will simplify the process of understanding the available software, and will help promote the methodology to an expansive set of scientific disciplines.

References

  1. Apputhurai, P., Stephenson, A.G.: Accounting for uncertainty in extremal dependence modeling using Bayesian model averaging techniques. J. Stat. Plan. Inference 141, 1800–1807 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  2. Asquith, W.H.: lmomco: L-moments, Trimmed L-moments, L-comoments, and Many Distributions. R package version 0.97.4 ed. (2009)

  3. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes. Wiley, Chichester (2004)

    MATH  Book  Google Scholar 

  4. Brodtkorb, P., Johannesson, P., Lindgren, G., Rychlik, I., Rydén, J., Sjö, E., WAFO—a Matlab toolbox for the analysis of random waves and loads. In: Proc. 10’th Int. Offshore and Polar Eng. Conf., vol. 3. ISOPE, Seattle, USA (2000)

    Google Scholar 

  5. Capéraà, P., Fougères, A.-L., Genest, C.: A non-parametric estimation procedure for bivariate extreme value copulas. Biometrika 84, 567–577 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  6. Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)

    MATH  Google Scholar 

  7. Coles, S., Pauli, F.: Models and inference for uncertainty in extremal dependence. Biometrika 89, 183–196 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  8. Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. B 53, 377–392 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Coles, S.G., Heffernan, J.E., Tawn, J.A.: Dependence measures for extreme value analyses. Extremes 2, 339–365 (1999)

    MATH  Article  Google Scholar 

  10. Cooley, D., Nychka, D.W., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824–840 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  11. Dalrymple, T.: Flood frequency analyses. Water Supply Paper 1543-A, U.S. Geological Survey, Reston, VA (1960)

  12. Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modelling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)

    MathSciNet  Article  Google Scholar 

  13. de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12, 1194–1204 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  14. de Haan, L., Ferreira, A.: Extreme value theory: an introduction. In: Springer Series in Operations Research and Financial Engineering, 418pp. Springer, New York (2006)

    Google Scholar 

  15. Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17, 1833–1855 (1989)

    MATH  Article  Google Scholar 

  16. Diebolt, J., Ecarnot, J., Garrido, M., Girard, S., Lagrange, D.: Le logiciel Extremes, un outil pour l’étude des queues de distribution. Revue Modulad 30, 53–60 (2003a)

    Google Scholar 

  17. Diebolt, J., Garrido, M., Trottier, C.: Improving extremal fit: a Bayesian regularization procedure. Reliab. Eng. Syst. Saf. 82(1), 21–31 (2003b)

    Article  Google Scholar 

  18. Diebolt, J., Garrido, M., Girard, S.: A goodness-of-fit test for the distribution tail. In: Ahsanulah, M., Kirmani, S. (eds.) Extreme Value Distributions, pp. 95–109. Nova Science, New York (2007)

    Google Scholar 

  19. Dietrich, D., de Haan, L., Hüsler, J.: Testing extreme value conditions. Extremes 5, 71–85 (2002)

    MathSciNet  Article  Google Scholar 

  20. Drees, H., de Haan, L., Li, D.: Approximations to the tail empirical distribution function with application to testing extreme value conditions. J. Stat. Plan. Inference 136, 3498–3538 (2006)

    MATH  Article  Google Scholar 

  21. El Adlouni, S., Bobée, B., Ouarda, T.B.M.J.: On the tails of extreme event distributions in hydrology. J. Hydrol. 355, 16–33 (2008)

    Article  Google Scholar 

  22. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance, 648pp. Springer, Berlin (1997)

    MATH  Book  Google Scholar 

  23. Ferro, C.A.T., Segers, J.: Inference for clusters of extreme values. J. R. Stat. Soc. B 65, 545–556 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  24. Gençay, R., Selçuk, F., Ulugülyaǧci, A.: EVIM: a software package for extreme value analysis in MATLAB. Stud. Nonlinear Dyn. Econom. 5(3), 213–239 (2001)

    Article  Google Scholar 

  25. Gilleland, E., Katz, R.W.: New software to analyze how extremes change over time. Eos 92(2), 13–14 (2011)

    Article  Google Scholar 

  26. Heffernan, J.E.: A directory of coefficients of tail dependence. Extremes 3, 279–290 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  27. Heffernan, J.E., Tawn, J.A.: A conditional approach for multivariate extreme values (with discussion). J. R. Stat. Soc., Ser. B 66, 497–546 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  28. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)

    MATH  Article  Google Scholar 

  29. Hosking, J.R.M.: L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc., Ser. B 52, 105–124 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Hosking, J.R.M.: L-moments, R package version 1.5 ed. (2009a)

  31. Hosking, J.R.M.: Regional frequency analysis using L-moments, R package version 2.2 ed. (2009b)

  32. Hosking, J.R.M., Wallis, J.R.: Parameter and quantile estimation for the Generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  33. Hosking, J.R.M., Wallis, J.R.: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  34. Hosking, J.R.M., Wallis, J.R., Wood, E.F.: Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27, 251–261 (1985)

    MathSciNet  Article  Google Scholar 

  35. Hüsler, J., Li, D.: How to use the package TestEVC1d.r, 3pp. Available at: http://my.gl.fudan.edu.cn/teacherhome/lideyuan/research.html (2006a)

  36. Hüsler, J., Li, D.: On testing extreme value conditions. Extremes 9, 69–86 (2006b)

    MathSciNet  MATH  Article  Google Scholar 

  37. Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37(5), 2042–2065 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  38. Kojadinovic, I., Yan, J.: Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software 34, 1–20 (2010)

    Google Scholar 

  39. Ledford, A.W., Tawn, J.A.: Statistics for near independence in multivariate extreme values. Biometrika 83, 169–187 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  40. Ledford, W.A., Tawn, J.A.: Modelling dependence within joint tail regions. J. R. Stat. Soc. B 59, 475–499 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  41. McCulloch, J.H.: Simple consistent estimators of stable distribution parameters. Commun. Stat., Simul. Comput. 15, 1109–1136 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  42. McNeil, A., Stephenson, A.G.: evir: extreme values in R (2008)

  43. Nolan, J.P.: Stable Distributions—Models for Heavy Tailed Data, 352pp. Birkhauser, Boston (2007). ISBN-13: 9780817641597

  44. Oesting, J., Kabluchko, Z., Schlather, M.: Simulation of Brown–Resnick processes. Extremes 15(1), 89–107 (2012). doi:10.1007/s10687-011-0128-8

    MathSciNet  Article  Google Scholar 

  45. Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  46. Pickands, J.: Multivariate extreme value distributions. In: Proc. 43rd Sess. Int. Statist. Inst., vol. 49, pp. 859–878 (1981)

  47. R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2012). ISBN 3-900051-07-0

  48. Reiss, R.D., Thomas, M.: Statistical Analysis of Extreme Values, From Insurance, Finance Hydrology and Other Fields. Birkhauser, New York (2001)

    MATH  Google Scholar 

  49. Reiss, R.D., Thomas, M.: Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, 3rd edn. Birkhauser, New York (2007)

    MATH  Google Scholar 

  50. Ribatet, M.: POT: Generalized Pareto Distribution and Peaks Over Threshold, R package verions 1.1-0 ed. (2009)

  51. Ribatet, M.: SpatialExtremes: Modelling Spatial Extremes, R package version 1.8-5 (2011)

  52. Rootzén, H., Tajvidi, N.: Multivariate generalized Pareto distributions. Bernoulli 12(5), 917–930 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  53. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. B 71, 319–392 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  54. Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33–44 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  55. Smith, R.L.: Maximum likelihood estimation in a class of non-regular cases. Biometrika 72, 67–90 (1985)

    MathSciNet  MATH  Article  Google Scholar 

  56. Smith, R.L.: Max-stable processes and spatial extreme. http://www.stat.unc.edu/postscript/rs/spatex.pdf (1990)

  57. Southworth, H.: ismev: An Introduction to Statistical Modeling of Extreme Values, Original S functions written by Janet E. Heffernan, S-PLUS pacakge by Harry Southworth. S-PLUS package version 1.2 ed. (2007)

  58. Southworth, H., Heffernan, J.E.: texmex: Threshold exceedences and multivariate extremes, R package version 1.0 (2010)

  59. Stephenson, A.G.: evd: extreme value distributions. R News 2(2), 31–32 (2002)

    Google Scholar 

  60. Stephenson, A.G.: ismev: An Introduction to Statistical Modeling of Extreme Values, Original S functions written by Janet E. Heffernan with R port and documentation provided by A. G. Stephenson. R package version 1.35 ed. (2011)

  61. Stephenson, A.G., Gilleland, E.: Software for the analysis of extreme events: the current state and future directions. Extremes 8, 87–109 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  62. Stephenson, A.G., Ribatet, M.: evdbayes: Bayesian analysis in extreme value theory, R package version 1.0-8 ed. (2010)

  63. Stephenson, A.G., Tawn, J.A.: Bayesian inference for extremes: accounting for the three extremal types. Extremes 7, 291–307 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  64. van der Loo, M.P.J.: Distribution Based Outlier Detection for Univariate Data. Statistics Netherlands, The Hague (2010)

    Google Scholar 

  65. Wallis, J.R.: Risk and uncertainties in the evaluation of flood events for the design of hydraulic structures. In: Guggino, E., Rossi, G., Todini, E. (eds.) Piene e Siccità, pp. 3–36. Fondazione Politecnica del Mediterraneo, Catania (1980)

    Google Scholar 

  66. Wong, T.S.T., Li, W.K.: A note on the estimation of extreme value distributions using maximum product of spacings. IMS Lecture Notes 52, 272–283 (2006)

    MathSciNet  Google Scholar 

  67. Wuertz, D.: fExtremes: Rmetrics—Extreme Financial Market Data, R package version 2100.77 ed. (2009)

  68. Yee, T.W.: The VGAM package for categorical data analysis. Journal of Statistical Software 32, 1–34 (2010)

    MathSciNet  Google Scholar 

  69. Yee, T.W., Stephenson, A.G.: Vector generalized linear and additive extreme value models. Extremes 10, 1–19 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  70. Yee, T.W., Wild, C.J.: Vector generalized additive models. J. R. Stat. Soc. B 58, 481–493 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Gilleland.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Gilleland, E., Ribatet, M. & Stephenson, A.G. A software review for extreme value analysis. Extremes 16, 103–119 (2013). https://doi.org/10.1007/s10687-012-0155-0

Download citation

Keywords

  • Extreme value theory
  • Software development
  • Spatial extremes
  • Statistical computing