Skip to main content
Log in

Nonparametric spatial models for extremes: application to extreme temperature data

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although the tools for statistical modeling of univariate extremes are well-developed, extending these tools to model spatial extreme data is an active area of research. In this paper, in order to make inference about spatial extreme events, we introduce a new nonparametric model for extremes. We present a Dirichlet-based copula model that is a flexible alternative to parametric copula models such as the normal and t-copula. The proposed modelling approach is fitted using a Bayesian framework that allow us to take into account different sources of uncertainty in the data and models. We apply our methods to annual maximum temperature values in the east-south-central United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Q., Wang, C., Shterev, I., Wang, E., Carin, L., Dunson, D.: Hierarchical kernel stick-breaking process for multi-task image analysis. In: International Conference on Machine Learning (ICML) (2009, to appear)

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes. Theory and Applications. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  • Blackwell, D.H., MacQueen, J.B.: Discreteness of Ferguson selections. Ann. Stat. 1, 356–358 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Buishand, D.H.L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Probab. 2, 624–642 (2008)

    MathSciNet  MATH  Google Scholar 

  • Climate Change Science Program (CCSP): Weather and Climate Extremes in a Changing Climate Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. U.S. Goverments CCSP (2008)

  • Cooley, D. Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824–840 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cooley, D., Naveau, P., Davis, R.: Dependence and Spatial Prediction in Max-Stable Random Fields. University of Colorado (2008)

  • Dai, A., Wigley, T.M.L., Boville, B.A., Kiehl, J.T., Buja, L.E.: Climates of the 20th and 21st centuries simulated by the NCAR climate system model. J. Climate 14, 485–519 (2001)

    Article  Google Scholar 

  • Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B 15, 393–442 (1990)

    MathSciNet  Google Scholar 

  • Demarta, S., Mcneil, A.J.: The t copula and related copulas. Int. Stat. Rev. 73(1), 111 (2005)

    Article  MATH  Google Scholar 

  • Dunson, D.B., Park, J.H.: Kernel stick-breaking processes. Biometrika 95, 307–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Eastoe, E.F.: A hierarchical model for non-stationary multivariate extremes: a case study of surface-level ozone and NO x data in the UK. Environmetrics 20(4), 428–444 (2009)

    Article  MathSciNet  Google Scholar 

  • Eastoe, E.F., Tawn, J.A.: Modelling non-stationary extremes with application to surface-level ozone. JRSS C 58(1), 25–45 (2009)

    MathSciNet  Google Scholar 

  • Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)

    Article  MATH  Google Scholar 

  • Fuentes, M., Reich, B.: Multivariate spatial nonparametric modelling via kernel processes mixing. Mimeo Series #2622 Statistics Department, NCSU. http://www.stat.ncsu.edu/library/mimeo.html (2008)

  • Gelfand, A.E., Kottas, A., MacEachern, S.N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100, 1021–1035 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin, J.E., Steel, M.F.J.: Order-based dependent Dirichlet processes. J. Am. Stat. Assoc. 101, 179–194 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilleland, E., Katz, R.W.: Analyzing seasonal to interannual extreme weather and climate variability with the extremes toolkit. NCAR tech. report. www.assessment.ucar.edu/pdf/Gilleland2006revised.pdf (2006)

  • Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Da, X., Maskell, K., Johnson, C.A.: Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report. www.grida.no/publications/other/ipcc_tar/ (2001)

  • Ishwaran, H., James, L.: Gibbs-sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)

    Book  MATH  Google Scholar 

  • Kharin, V., Zwiers, F.: Estimating extremes in transient climate change simulations. J. Climate 18, 1156–1173 (2005)

    Article  Google Scholar 

  • MacEachern, S.N.: Computational methods for mixture of Dirichlet process models. In: Dey, D., Müller, P., Sinha, D. (eds.) Practical Nonparametric and Semiparametric Bayesian Statistics, pp. 23–44. Springer, New York (1998)

    Chapter  Google Scholar 

  • MacEachern, S.N.: Dependent nonparametric processes. In: ASA Proceedings of the Section on Bayesian Statistical Science. American Statistical Association, Alexandria (1999)

    Google Scholar 

  • Mitchell, J.F.B., Manabe, S., Meleshko, V., Tokioka, T.: Equilibrium climate change and its implications for the future. In: Houghton, J.L, Jenkins, G.J., Ephraums, J.J. (eds.) Climate Change. The IPCC Scientific Assessment. Contribution of Working Group 1 to the First Assessment Report of the Intergovernmental Panel on Climate Change, pp. 137–164. Cambridge University Press, Cambridge (1990)

  • Nelsen, R.: An Introduction to Copulas. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Papaspiliopoulos, O., Roberts, G.: Retrospective MCMC for Dirichlet process hierarchical models. Biometrika 95, 169–186 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Parmesan, C., Root, T.L., Willing, M.R.: Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000)

    Article  Google Scholar 

  • Reich, B.J., Fuentes, M.: A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Ann. Appl. Stat. 1, 249–264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16(3), 407–426 (2009)

    Article  MathSciNet  Google Scholar 

  • Schlather, M., Tawn, J.A.: A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90, 139—156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  • Smith, R.L.: Max-stable processes and spatial extremes. Unpublished manuscript. Tech. report at University of North Carolina, Chapel Hill (1990)

    Google Scholar 

  • Tiago de Oliveira, J.: Bivariate and multivariate extremal distribution. In: Patil, G., et al. (eds.) Statistical Distributions in Scientific Work, vol. 1, pp. 355–361. Reidel, Amsterdam (1975)

    Chapter  Google Scholar 

  • van Vliet, A.J.H., Leemans, R.: Rapid species responses to changes in climate require stringent climate protection targets. In: Schellnhuber, H.J., Cramer, W., Nakicinovic, N., Wigley, T., Yohe, G. (eds.) Avoiding Dangerous Climate Change, pp. 135–143. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  • Yonetani, T., Gordon, H.B.: Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO2 is doubled. J. Climate 14, 1765–1779 (2001)

    Article  Google Scholar 

  • Zhang, J., Craigmile, P.F., Cressie, N.: Loss function approaches to predict a spatial quantile and its exceedance region. Technometrics 50 (2), 216–227 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Fuentes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, M., Henry, J. & Reich, B. Nonparametric spatial models for extremes: application to extreme temperature data. Extremes 16, 75–101 (2013). https://doi.org/10.1007/s10687-012-0154-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-012-0154-1

Keywords

Navigation