Skip to main content
Log in

Chord-length distribution functions and Rice formulae. Application to random media

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We consider a stationary and isotropic bi-phasic (pore and solid) medium, draw many lines through it, and see each line as a one-dimensional level-cut process with value 0 or 1 according to whether a regular stationary process X is less or greater than a given level. The intervals corresponding to the points at which X is in a given phase are named chords. We are interested in obtaining information on the chord-length distribution functions. Working with the Palm probability measure and using level crossings techniques, in particular Rice methods, we can obtain not only the exact analytical formula of the chord-length distribution function but also the joint distribution function of the lengths of two successive chords. Finally, we indicate some concrete applications for the computation of usual stereological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, R.: The Geometry of Random Fields. Wiley, New York (1981)

    MATH  Google Scholar 

  • Adler, R., Taylor, J.: Random Field and Geometry. Springer, New York (2007)

    Google Scholar 

  • Azaïs, J.-M., Wschebor, M.: On the regularity of the distribution of the maximum of one-parameter Gaussian processes. Probab. Theory Relat. Fields 119, 70–98 (2001a)

    Article  MATH  Google Scholar 

  • Azaïs, J.-M., Wschebor, M.: The distribution of the maximum of a Gaussian process: Rice method revisited. Prog. Probab. 51, 321–348 (2001b)

    Google Scholar 

  • Azaïs, J.-M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  • Baccelli, F., Brémaud, P.: Elements of Queueing Theory. Springer, New York (2003)

    MATH  Google Scholar 

  • Berk, N.: Scattering properties of the leveled-wave model of random morphologies. Phys. Rev. A 44, 5069–5079 (1991)

    Article  Google Scholar 

  • Brodtkorb, P.A.: Evaluating nearly singular multinormal expectations with applications to wave distributions. Methodol. Comput. Appl. Probab. 8, 65–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Brodtkorb, P.A., Johannesson, P., Lindgren, G., Rychlik, I., Rydén, J., Sjö, E.: WAFO—a Matlab toolbox for analysis of random waves and loads. In: Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, vol. III, pp. 343–350. http://www.maths.lth.se/matstat/wafo/ (2000)

  • Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Wiley, New York (1967)

    MATH  Google Scholar 

  • de Maré, J.: When are the successive zero-crossings intervals of a Gaussian process independent? Univ. Lund Stat. Res. Rep., 1–12 (1974)

  • Derrida, B., Hakim, V., Zeitak, R.: Persistent spins in the linear diffusion approximation of phase ordering and zeros of stationary Gaussian proceses. Phys. Rev. Lett. 77, 2871–2874 (1996)

    Article  Google Scholar 

  • Itô, K.: The expected number of zeros of continuous stationary Gaussian processes. J. Math. Kyoto Univ. 3, 207–216 (1964)

    MathSciNet  MATH  Google Scholar 

  • Jokisch, D.W., Patton, P.W., Rajon, D.A.: Chord distributions across 3D digital images of a human thoracic vertebra. Med. Phys. 28, 1493–1504 (2001)

    Article  Google Scholar 

  • Kratz, M.: Level crossings and other level functionals of stationary Gaussian processes. Probab. Survey 3, 230–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lantuéjoul, C.: Geostatistical Simulation. Models and Algorithms. Springer, New York (2002)

    MATH  Google Scholar 

  • Leadbetter, M.R., Spaniolo, G.V.: Reflections on Rice’s formulae for level crossings—history, extensions and use. Aust. N. Z. J. Stat. 46(1), 173–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lindgren, G.: Wave-length and amplitude in Gaussian noise. Adv. Appl. Probab. 4, 81–108 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Longuet-Higgins, M.S.: The distribution of intervals between zeros of a stationary random function. Philos. Trans. R. Soc. Lond., A 254, 557–599 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  • Mercadier, C.: Numerical bounds for the distribution of the maximum of some one- and two-parameter Gaussian processes. Ann. Appl. Probab. 15, 254–278 (2006)

    Google Scholar 

  • Neveu, J.: Processus Ponctuels. Lecture Notes in Mathematics, 598, Ecole d’été de Probabilités de Saint-Flour VI. Springer, New York (1976)

    Google Scholar 

  • Nott, D.J., Wilson, R.J.: Multi-phase image modelling with excursion sets. Signal Process. 80, 125–139 (2000)

    Article  MATH  Google Scholar 

  • Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. Math Review number: MR0011918 (1944–1945)

  • Roberts, A.P., Teubner, M.: Transport properties of heterogeneous materials derived from Gaussian random fields: bounds and simulation. Phys. Rev. E 51, 4141–4154 (1995)

    Article  Google Scholar 

  • Roberts, A.P., Torquato, S.: Chord-distribution functions of three-dimensional random media: approximate first-passage times of Gaussian processes. Phys. Rev. E 59(5), 4953–4963 (1999)

    Article  MathSciNet  Google Scholar 

  • Rychlik, I.: A note on Durbin’s formula for the first-passage density. Stat. Probab. Lett. 5, 425–428 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Rychlik, I.: Joint distribution of successive zero crossing distances for stationary Gaussian processes. J. Appl. Probab. 24, 378–385 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Schüth, F., Sing, K.S.W., Weitkamp, J. (eds.): Handbook in Porous Solids. Wiley, New York (2002)

    Google Scholar 

  • Spaniolo, G.V.: Rice’s formula and Palm probabilities with applications to structural reliability. PhD dissertation, University of North Carolina (2000)

  • Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and its Applications. Wiley, New York (1995)

    MATH  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials. Springer, New York (2002)

    MATH  Google Scholar 

  • Wschebor, M.: Surfaces Aléatoires. Lecture Notes in Mathematics, vol. 1147. Springer, New York (1985)

    Google Scholar 

  • Ylvisaker, N.: The expected number of zeros of a stationary Gaussian process. Ann. Math. Stat. 36, 1043–1046 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Kratz.

Additional information

This work was partially supported by the French grant “Mipomodim” ANR-05-BLAN-0017.

Marie Kratz is also a member of MAP5, Univ. Paris Descartes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrade, A., Iribarren, I. & Kratz, M. Chord-length distribution functions and Rice formulae. Application to random media. Extremes 15, 333–352 (2012). https://doi.org/10.1007/s10687-011-0141-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-011-0141-y

Keywords

AMS 2000 Subject Classifications

Navigation