Extremes

, Volume 13, Issue 2, pp 241–267 | Cite as

Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment

  • Hayley J. Fowler
  • Daniel Cooley
  • Stephan R. Sain
  • Milo Thurston
Open Access
Article

Abstract

We investigate a question posed by policy makers, namely, “when will changes in extreme precipitation due to climate change be detectable?” To answer this question we use climateprediction.net (CPDN) model simulations from the BBC Climate Change Experiment (CCE) over the UK. These provide us with the unique opportunity to compare 1-day extreme precipitation generated from climate altered by observed forcings (time period 1920–2000) and the SRES A1B emissions scenario (time period 2000–2080) (the Scenario) to extreme precipitation generated by a constant climate for year 1920 (the Control) for the HadCM3L General Circulation Model (GCM). We fit non-stationary Generalized Extreme Value (GEV) models to the Scenario output and compare these to stationary GEV models fit to the parallel Control. We define the time of detectable change as the time at which we would reject a hypothesis at the α = 0.05 significance level that the 20-year return level of the two runs is equal. We find that the time of detectable change depends on the season, with most model runs indicating that change to winter extreme precipitation may be detectable by the year 2010, and that change to summer extreme precipitation is not detectable by 2080. We also investigate which climate model parameters affect the weight of the tail of the precipitation distribution and which affect the time of detectable change for the winter season. We find that two climate model parameters have an important effect on the tail weight, and two others seem to affect the time of detection. Importantly, we find that climate model simulated extreme precipitation has a fundamentally different behavior to observations, perhaps due to the negative estimate of the GEV shape parameter, unlike observations which produce a slightly positive (∼0.0–0.2) estimate.

Keywords

Extreme precipitation Detection Climate change Climateprediction.net Parameters Generalized extreme value 

AMS 2000 Subject Classifications

62-statistics 

References

  1. Ackerley, D., Highwood, E.J., Frame, D.J.: Changes in the global sulphate burden due to perturbations in global CO2 concentrations. J. Clim. 22, 5421–5432 (2009a)CrossRefGoogle Scholar
  2. Ackerley, D., Highwood, E.J., Frame, D.J.: Quantifying the effects of perturbing the physics of an interactive sulphur scheme using an ensemble of GCMs on the climateprediction.net platform. J. Geophys. Res. 114, D01203 (2009b)CrossRefGoogle Scholar
  3. Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Ambenje, P., Rupa Kumar, K., Revadekar, J., Griffiths, G.: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006). doi:10.1029/2005JD006290 CrossRefGoogle Scholar
  4. Allen, M.: Do-it-yourself climate prediction. Nature 401, 642 (1999)CrossRefGoogle Scholar
  5. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes, Theory and Applications. Wiley, West Sussex (2004)MATHCrossRefGoogle Scholar
  6. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical-Theoretic Approach, 2nd edition. Springer, London (2002)Google Scholar
  7. Chavez-Demoulin, V., Davison, A.C.: Generalized Additive Models for Sample Extremes. J. Roy. Stat. Soc. C-App. 54, 207–222 (2001)CrossRefMathSciNetGoogle Scholar
  8. Christensen, C., Aina, T., Stainforth, D.: The challenge of volunteer computing with lengthy climate modelling simulations. In: Proc. 1st IEEE Conference on Science and Grid Computing (2005)Google Scholar
  9. Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)MATHGoogle Scholar
  10. Covey, C., Achuta Rao, K.M., Cubasch, U., Jones, P., Lambert, S.J., Mann, M.E., Phillips, T.J., Taylor, K.E.: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change 37, 103–133 (2003)CrossRefGoogle Scholar
  11. deHaan, L., Ferreira, A.: Extreme Value Theory. An Introduction. Springer, Heidelberg (2006)Google Scholar
  12. Ekström, M., Fowler, H.J., Kilsby, C.G., Jones, P.D.: New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Future estimates and use in impact studies. J. Hydrol. 300, 234–251 (2005)CrossRefGoogle Scholar
  13. Fowler, H.J., Ekström, M.: Multi-model ensemble estimates of climate change impacts on UK seasonal rainfall extremes. Int. J. Climatol. 29, 385–416 (2009)CrossRefGoogle Scholar
  14. Fowler, H.J., Kilsby, C.G.: A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int. J. Climatol. 23, 1313–1334 (2003a)CrossRefGoogle Scholar
  15. Fowler, H.J., Kilsby, C.G.: Implications of changes in seasonal and annual extreme rainfall. Geophys. Res. Lett. 30, 1720 (2003b). doi:10.1029/2003GL017327 CrossRefGoogle Scholar
  16. Fowler, H.J., Wilby, R.L.: Detecting changes in seasonal precipitation extremes using regional climate model projections: implications for managing fluvial flood risk. Water Resour. Res. (2010). doi:10.1029/2008WR007636
  17. Fowler, H.J., Ekström, M., Kilsby, C.G., Jones, P.D.: New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. J. Hydrol. 300, 212–233 (2005)CrossRefGoogle Scholar
  18. Fowler, H.J., Ekström, M., Blenkinsop, S., Smith, A.P.: Estimating change in extreme European precipitation using a multi-model ensemble. J. Geophys. Res. Atmos. 112, D18104 (2007). doi:10.1029/2007JD008619 CrossRefGoogle Scholar
  19. Frame, D.J., Aina, T., Christensen, C.M., Faull, N.E., Knight, S.H.E., Piani, C., Rosier, S.M., Yamazaki, K., Yamazaki, Y., Allen, M.R.: The climateprediction.net BBC climate change experiment: design of the coupled model ensemble. Philos. Trans. Roy. Soc. A 367, 855–870 (2009)CrossRefMathSciNetGoogle Scholar
  20. Frei, C., Schär, C.: Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J. Climate 14, 1568–1584 (2001)CrossRefGoogle Scholar
  21. Giorgi, F., Francisco, R.: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett. 27, 1295–1298 (2000)CrossRefGoogle Scholar
  22. Gregory, D., Rowntree, P.: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev. 118, 1438–1506 (1990)CrossRefGoogle Scholar
  23. Groisman, P.Ya., Knight, R.W., Easterling, D.R., Karl, T.R., Hegerl, G.C., Razuvaev, V.N.: Trends in intense precipitation in the climate record. J. Climate 18, 1326–1350 (2005)CrossRefGoogle Scholar
  24. Hays, W.L.: Statistics for the Social Sciences, 2nd edn. Holt, Rinehart, and Winston, New York (1973)Google Scholar
  25. Hegerl, G.C., Zwiers, F.W., Stott, P.A., Kharin, V.V.: Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Climate 17, 3683–3700 (2004)CrossRefGoogle Scholar
  26. Hegerl, G.C., Karl, T.R., Allen, M., Bindoff, N.L., Gillett, N., Karoly, D., Zhang, X.B., Zwiers, F.: Climate change detection and attribution: beyond mean temperature signals. J. Climate 19, 5058–5077 (2006)CrossRefGoogle Scholar
  27. Hegerl, G.C., Zwiers, F.W., Braconnot, P., Gillet, N.P., Luo, Y., Marengo, J.A., Nicholls, N., Penner, J.E., Stott, P.A.: Understanding and attributing climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)Google Scholar
  28. Jones, C.: A fast ocean GCM without flux adjustments. J. Atmos. Oceanic Technol. 20, 1857–1868 (2003). doi:10.1175/1520–0426(2003)020<1857:AFOGWF>2.0.CO;2 CrossRefGoogle Scholar
  29. Jones, C.D., Palmer, J.R.: Spin up methods for HadCM3L. Technical report CRTN 84, Hadley Centre for Climate Prediction and Research (1998)Google Scholar
  30. Joshi, M., Gregory, J.: The dependence of the land-sea contrast in surface climate response on the nature of the forcing. Geophys. Res. Lett. 35, L24802 (2008)CrossRefGoogle Scholar
  31. Katz, R.W.: Extreme value theory for precipitation: sensitivity analysis for climate change. Adv. Water Resour. 23, 133–139 (1999)CrossRefGoogle Scholar
  32. Kharin, V.V., Zwiers, F.W.: Estimating extremes in transient climate change simulations. J. Climate 18, 1156–1173 (2005)CrossRefGoogle Scholar
  33. Kharin, V., Zwiers, F.W., Zhang, X., Hegerl, G.C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate 20, 1419–1444 (2007)CrossRefGoogle Scholar
  34. Kiehl, J.T.: Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34, L22710 (2007). doi:10.1029/2007GL031383 CrossRefGoogle Scholar
  35. Kiktev, D., Sexton, D.M.H., Alexander, L., Folland, C.K.: Comparison of modeled and observed trends in indices of daily climate extremes. J. Climate 16, 3560–3571 (2003)CrossRefGoogle Scholar
  36. Knight, C.G., Knight, S.H.E., Massey, N., Aina, T., Christensen, C., Frame, D.J., Kettleborough, J.A., Martin, A., Pascoe, S., Sanderson, B., Stainforth, D.A., Allen, M.R.: Association of parameter, software and hardware variation with large scale behavior across 57,000 climate models. Proc. Natl. Acad. Sci. USA 104, 12259–12264 (2007)CrossRefGoogle Scholar
  37. Lambert, F.H., Stott, P.A., Allen, M.R., Palmer, M.A.: Detection and attribution of changes in 20th century land precipitation. Geophys. Res. Lett. 31, L10203 (2004). doi:10.1029/2004GL019545 CrossRefGoogle Scholar
  38. Meehl, G.A., Arblaster, J.M., Tebaldi, C.: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett. 32, L18719 (2005). doi:10.1029/2005GL023680 CrossRefGoogle Scholar
  39. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Raihi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., Dadi, Z.: IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge (2000), 599 ppGoogle Scholar
  40. Oehlert, G.W.: A note on the delta method. Am. Stat. 46, 27–29 (1992)CrossRefMathSciNetGoogle Scholar
  41. Olejnik, S., Algina, J.: Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol. Methods 8, 434–447 (2003)CrossRefGoogle Scholar
  42. Osborn, T.J., Hulme, M.: Development of a relationship between station and grid-box rain day frequencies for climate model evaluation. J. Climate 10, 1885–1908 (1997)CrossRefGoogle Scholar
  43. Osborn, T.J., Hulme, M., Jones, P.D., Basnett, T.A.: Observed trends in the daily intensity of United Kingdom precipitation. Int. J. Climatol. 20, 347–364 (2000)CrossRefGoogle Scholar
  44. Piani, C., Frame, D.J., Stainforth, D.A., Allen, M.R.: Constraints on climate change from a multi-thousand member ensemble of simulations. Geophys. Rev. Lett. 32, L23825 (2005)CrossRefGoogle Scholar
  45. Räisänen, J., Joelsson, R.: Changes in average and extreme precipitation in two regional climate model experiments. Tellus 53A, 547–566 (2001)Google Scholar
  46. Sanderson, B., Piani, C.: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn. 30, 175–190 (2007)CrossRefGoogle Scholar
  47. Sanderson, B., Knutti, R., Aina, T., Christensen, C., Faull, N., Frame, D.J., Ingram, W.J., Piani, C., Stainforth, D.A., Stone, D.A., Allen, M.R.: Constraints on model response to greenhouse gas forcing and the rose of sub-grid scale processes. J. Clim. 21, 2384–2400 (2008)CrossRefGoogle Scholar
  48. Semenov, V.A., Bengtsson, L.: Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Climate Dyn. 19, 123–140 (2002)CrossRefGoogle Scholar
  49. Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani, C., Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., Allen, M.R.: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406 (2005)CrossRefGoogle Scholar
  50. Tebaldi, C., Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections. Philos. T. Roy. Soc. A 365, 2053–2075 (2007)CrossRefMathSciNetGoogle Scholar
  51. Tebaldi, C., Hayhoe, K., Arblaster, J.M., Meehl, G.A.: Going to the extremes; an intercomparison of model-simulated historical and future changes in extreme events. Clim. Change 79, 185–211 (2006)CrossRefGoogle Scholar
  52. Tett, S.F.B., Betts, R., Crowley, T.J., Gregory, J., Johns, T.C., Jones, A., Osborn, T.J., Ostrom, E., Roberts, D.L., Woodgate, M.J.: The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim. Dynam. 28, 3–34 (2007)CrossRefGoogle Scholar
  53. Trenberth, K.E., Dai, A.G., Rasmussen, R.M., Parsons, D.B.: The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003)CrossRefGoogle Scholar
  54. Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B., Zhai, P.: Observations: surface and atmospheric climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)Google Scholar
  55. Wilson, P.R., Toumi, R.: A fundamental probability distribution for heavy rainfall. Geophys. Res. Lett. 32, L14812 (2005). doi:10.1029/2005GL022465 CrossRefGoogle Scholar
  56. Zhang, X., Zwiers, F.W., Hegerl, G.C., Lambert, F.G., Gillett, N.P., Solomon, S., Stott, P.A., Nozawa, T.: Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hayley J. Fowler
    • 1
  • Daniel Cooley
    • 2
  • Stephan R. Sain
    • 3
  • Milo Thurston
    • 4
  1. 1.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Department of StatisticsColorado State UniversityFort CollinsUSA
  3. 3.Institute for Mathematics Applied to GeoscienceNational Center for Atmospheric ResearchBoulderUSA
  4. 4.Oxford e-Research CentreOxford UniversityOxfordUK

Personalised recommendations