Skip to main content
Log in

Semi-parametric estimation for heavy tailed distributions

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

In this paper, we generalize several studies in the area of extreme value theory for the estimation of the extreme value index and the second order parameter. Weak consistency and asymptotic normality are proven under classical assumptions. Some numerical simulations and computations are also performed to illustrate the finite-sample and the limiting behavior of the estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beirlant, J., Vynckier, P., Teugels, J.L.: Excess functions and estimation of the extreme-value index. Bernoulli 2(4), 293–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Dierckx, G., Guillou, A., Stǎricǎ, C.: On exponential representations of log-spacings of extreme order statistics. Extremes 5(2), 157–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Chernoff, H., Gastwirth, J.L., Johns, M.V., Jr.: Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Ann. Math. Stat. 38, 52–72 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  • Csörgő, S., Deheuvels, P., Mason, D.: Kernel estimates of the tail index of a distribution. Ann. Stat. 13(3), 1050–1077 (1985)

    Article  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme value theory. Springer Series in Operations Research and Financial Engineering. An introduction. Springer, New York (2006)

    Google Scholar 

  • Dekkers, A.L.M., de Haan, L.: Optimal choice of sample fraction in extreme-value estimation. J. Multivar. Anal. 47(2), 173–195 (1993)

    Article  MATH  Google Scholar 

  • Draisma, G., de Haan, L., Peng, L., Pereira, T.T.: A bootstrap-based method to achieve optimality in estimating the extreme-value index. Extremes 2(4), 367–404 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Drees, H.: On smooth statistical tail functionals. Scand. J. Statist. 25(1), 187–210 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Drees, H., Kaufmann, E.: Selecting the optimal sample fraction in univariate extreme value estimation. Stoch. Process. their Appl. 75(2), 149–172 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Fils, A., Guillou, A.: A new extreme quantile estimator for heavy-tailed distributions. C. R. Math. Acad. Sci. Paris 338(6), 493–498 (2004)

    MATH  MathSciNet  Google Scholar 

  • Fraga Alves, M.I., Gomes, M.I., de Haan, L.: A new class of semi-parametric estimators of the second order parameter. Port. Math. (N.S.) 60(2), 193–213 (2003)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Martins, M.J.: Efficient alternatives to the Hill estimator. In: Proceedings of the Workshop V.E.L.A.—Extreme Values and Additive Laws, C.E.A.U.L. edn., pp. 40–43 (1999)

  • Gomes, M.I., Martins, M.J.: Generalizations of the Hill estimator-asymptotic versus finite sample behaviour. J. Stat. Plan. Inference 93(1–2), 161–180 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., de Haan, L., Peng, L.: Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5(4), 387–414 (2002)

    Article  MathSciNet  Google Scholar 

  • Gomes, M.I., Miranda, C., Viseu, C.: Reduced-bias tail index estimation and the jackknife methodology. Statist. Neerl. 61(2), 243–270 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P.: On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. B 44(1), 37–42 (1982)

    MATH  Google Scholar 

  • Hall, P., Welsh, A.H.: Adaptive estimates of parameters of regular variation. Ann. Stat. 13(1), 331–341 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)

    Article  MATH  Google Scholar 

  • Hüsler, J., Li, D., Müller, S.: Weighted least squares estimation of the extreme value index. Stat. Probab. Lett. 76(9), 920–930 (2006)

    Article  MATH  Google Scholar 

  • Kratz, M., Resnick, S.I.: The QQ-estimator and heavy tails. Commun. Stat. Stoch. Models 12(4), 699–724 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Schultze, J., Steinebach, J.: On least squares estimates of an exponential tail coefficient. Stat. Decis. 14(4), 353–372 (1996)

    MATH  MathSciNet  Google Scholar 

  • Segers, J.: Residual estimators. J. Stat. Plan. Inference 98(1–2), 15–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73(364), 812–815 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Mercadier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciuperca, G., Mercadier, C. Semi-parametric estimation for heavy tailed distributions. Extremes 13, 55–87 (2010). https://doi.org/10.1007/s10687-009-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-009-0086-6

Keywords

AMS 2000 Subject Classifications

Navigation