Abstract
In this paper, we generalize several studies in the area of extreme value theory for the estimation of the extreme value index and the second order parameter. Weak consistency and asymptotic normality are proven under classical assumptions. Some numerical simulations and computations are also performed to illustrate the finite-sample and the limiting behavior of the estimators.
Similar content being viewed by others
References
Beirlant, J., Vynckier, P., Teugels, J.L.: Excess functions and estimation of the extreme-value index. Bernoulli 2(4), 293–318 (1996)
Beirlant, J., Dierckx, G., Guillou, A., Stǎricǎ, C.: On exponential representations of log-spacings of extreme order statistics. Extremes 5(2), 157–180 (2002)
Chernoff, H., Gastwirth, J.L., Johns, M.V., Jr.: Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Ann. Math. Stat. 38, 52–72 (1967)
Csörgő, S., Deheuvels, P., Mason, D.: Kernel estimates of the tail index of a distribution. Ann. Stat. 13(3), 1050–1077 (1985)
de Haan, L., Ferreira, A.: Extreme value theory. Springer Series in Operations Research and Financial Engineering. An introduction. Springer, New York (2006)
Dekkers, A.L.M., de Haan, L.: Optimal choice of sample fraction in extreme-value estimation. J. Multivar. Anal. 47(2), 173–195 (1993)
Draisma, G., de Haan, L., Peng, L., Pereira, T.T.: A bootstrap-based method to achieve optimality in estimating the extreme-value index. Extremes 2(4), 367–404 (1999)
Drees, H.: On smooth statistical tail functionals. Scand. J. Statist. 25(1), 187–210 (1998)
Drees, H., Kaufmann, E.: Selecting the optimal sample fraction in univariate extreme value estimation. Stoch. Process. their Appl. 75(2), 149–172 (1998)
Fils, A., Guillou, A.: A new extreme quantile estimator for heavy-tailed distributions. C. R. Math. Acad. Sci. Paris 338(6), 493–498 (2004)
Fraga Alves, M.I., Gomes, M.I., de Haan, L.: A new class of semi-parametric estimators of the second order parameter. Port. Math. (N.S.) 60(2), 193–213 (2003)
Gomes, M.I., Martins, M.J.: Efficient alternatives to the Hill estimator. In: Proceedings of the Workshop V.E.L.A.—Extreme Values and Additive Laws, C.E.A.U.L. edn., pp. 40–43 (1999)
Gomes, M.I., Martins, M.J.: Generalizations of the Hill estimator-asymptotic versus finite sample behaviour. J. Stat. Plan. Inference 93(1–2), 161–180 (2001)
Gomes, M.I., de Haan, L., Peng, L.: Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5(4), 387–414 (2002)
Gomes, M.I., Miranda, C., Viseu, C.: Reduced-bias tail index estimation and the jackknife methodology. Statist. Neerl. 61(2), 243–270 (2007)
Hall, P.: On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. B 44(1), 37–42 (1982)
Hall, P., Welsh, A.H.: Adaptive estimates of parameters of regular variation. Ann. Stat. 13(1), 331–341 (1985)
Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)
Hüsler, J., Li, D., Müller, S.: Weighted least squares estimation of the extreme value index. Stat. Probab. Lett. 76(9), 920–930 (2006)
Kratz, M., Resnick, S.I.: The QQ-estimator and heavy tails. Commun. Stat. Stoch. Models 12(4), 699–724 (1996)
Schultze, J., Steinebach, J.: On least squares estimates of an exponential tail coefficient. Stat. Decis. 14(4), 353–372 (1996)
Segers, J.: Residual estimators. J. Stat. Plan. Inference 98(1–2), 15–27 (2001)
Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73(364), 812–815 (1978)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ciuperca, G., Mercadier, C. Semi-parametric estimation for heavy tailed distributions. Extremes 13, 55–87 (2010). https://doi.org/10.1007/s10687-009-0086-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10687-009-0086-6
Keywords
- Extreme value index
- Second order parameter
- Hill estimator
- Semi-parametric estimation
- Asymptotic properties