Skip to main content
Log in

Conditional limit results for type I polar distributions

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Let (S 1,S 2) = (R cos(Θ), R sin(Θ)) be a bivariate random vector with associated random radius R which has distribution function F being further independent of the random angle Θ. In this paper we investigate the asymptotic behaviour of the conditional survivor probability \(\overline{I}_{\rho,u}(y):=\mbox{\rm$\boldsymbol{P}$} \left\{{\rho S_1+ \sqrt{1- \rho^2} S_2> y \lvert S_1> u}\right\} , \rho \in (-1,1),\in \!I\!\!R\) when u approaches the upper endpoint of F. On the density function of Θ we impose a certain local asymptotic behaviour at 0, whereas for F we require that it belongs to the Gumbel max-domain of attraction. The main result of this contribution is an asymptotic expansion of \(\overline{I}_{\rho,u}\), which is then utilised to construct two estimators for the conditional distribution function \(1- \overline{I}_{\rho,u}\). Furthermore, we allow Θ to depend on u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdous, B., Fougères, A.-L., Ghoudi, K.: Extreme behaviour for bivariate elliptical distributions. Can. J. Stat. 33(3), 317–334 (2005)

    Article  MATH  Google Scholar 

  • Abdous, B., Fougères, A.-L., Ghoudi, K., Soulier, P.: Estimation of bivariate excess probabilities for elliptical models. www.arXiv:math/0611914v3 (2008)

  • Berman, M.S.: Sojourns and extremes of stationary processes. Ann. Probab. 10, 1–46 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Berman, M.S.: Sojourns and extremes of Fourier sums and series with random coefficients. Stoch. Process. their Appl. 15, 213–238 (1983)

    Article  MATH  Google Scholar 

  • Berman, M.S.: Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/ Cole, Boston (1992)

    MATH  Google Scholar 

  • Cambanis, S., Huang, S., Simons, G.: On the theory of elliptically contoured distributions. J. Multivar. Anal. 11(3), 368–385 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • De Haan, L., Ferreira, A.: Extreme Value Theory. An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  • Eddy, W.F., Gale, J.D.: The convex hull of a spherically symmetric sample. Adv. Appl. Probab. 13, 751–763 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Galambos, J.: The Asymptotic Theory Of Extreme Order Statistics, 2nd edn. Krieger, Malabar (1987)

    MATH  Google Scholar 

  • Gale, J.D.: The asymptotic distribution of the convex hull of a random sample. Ph.D. Thesis, Carnegie-Mellon University (1980)

  • Falk, M., Hüsler, J., Reiss R.-D.: Laws of Small Numbers: Extremes and Rare Events. DMV Seminar, 2nd edn, vol. 23. Birkhäuser, Basel (2004)

    Google Scholar 

  • Hashorva, E.: Gaussian approximation of conditional elliptical random vectors. Stoch. Models 22(3), 441–457 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Hashorva, E.: Exact tail asymptotics for type I bivariate elliptical distributions. Albanian J. Math. 1(2), 99–114 (2007a)

    MATH  MathSciNet  Google Scholar 

  • Hashorva, E.: Conditional limiting distribution of type III elliptical random vectors. J. Multivar. Anal. 98(2), 282–294 (2007b)

    Article  MATH  MathSciNet  Google Scholar 

  • Hashorva, E.: Tail asymptotics and estimation for elliptical distributions. Insur. Math. Econ. 43(1), 158–164 (2008a)

    Article  MATH  MathSciNet  Google Scholar 

  • Hashorva, E.: Conditional limiting distribution of Beta-independent random vectors. J. Multivar. Anal. 99(8), 1438–1459 (2008b)

    Article  MATH  MathSciNet  Google Scholar 

  • Heffernan, J.E., Tawn, J.A.: A conditional approach for multivariate extreme values. J. R. Stat. Soc. Ser. B Stat. Methodol. 66(3), 497–546 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Heffernan, J.E., Resnick, S.I.: Limit laws for random vectors with an extreme component. Ann. Appl. Probab. 17(2), 537–571 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Kotz, S., Nadarajah, S.: Extreme Value Distributions, Theory and Applications. Second Printing. Imperial College Press, London (2005)

    Google Scholar 

  • Klüppelberg, C., Kuhn, K., Peng, L.: Estimating the tail dependence of an elliptical distribution. Bernoulli 13(1), 229–251 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Reiss, R.-D.: Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics. Springer, New York (1989)

    MATH  Google Scholar 

  • Reiss, R.-D., Thomas, M.: Statistical Analysis of Extreme Values. From Insurance, Finance, Hydrology and Other Fields, 3rd edn. Birkhäuser, Basel (2007)

    Google Scholar 

  • Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Soft Cover Edition. Springer, New York (2008)

    Google Scholar 

  • Tang, Q.: The subexponentiality of products revisited. Extremes 9(3–4), 231–241 (2006)

    MATH  MathSciNet  Google Scholar 

  • Tang, Q.: From light tails to heavy tails through multiplier. Extremes 11(4), 379–391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkelejd Hashorva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashorva, E. Conditional limit results for type I polar distributions. Extremes 12, 239–263 (2009). https://doi.org/10.1007/s10687-008-0078-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-008-0078-y

Keywords

AMS 2000 Subject Classifications

Navigation