Extremes

, Volume 11, Issue 3, pp 261–279 | Cite as

Tail behavior of random sums under consistent variation with applications to the compound renewal risk model

  • Aldona Aleškevičienė
  • Remigijus Leipus
  • Jonas Šiaulys
Article

Abstract

In this paper, we consider the random sums of i.i.d. random variables ξ1,ξ2,... with consistent variation. Asymptotic behavior of the tail P(ξ1 + ... + ξη > x), where η is independent of ξ1,ξ2,..., is obtained for different cases of the interrelationships between the tails of ξ1 and η. Applications to the asymptotic behavior of the finite-time ruin probability ψ(x,t) in a compound renewal risk model, earlier introduced by Tang et al. (Stat Probab Lett 52, 91–100 (2001)), are given. The asymptotic relations, as initial capital x increases, hold uniformly for t in a corresponding region. These asymptotic results are illustrated in several examples.

Keywords

Random sums Consistent variation Compound renewal risk model Ruin probability 

AMS 2000 Subject Classifications

Primary—60G50; Secondary—60F10, 62P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bingham, N.H., Goldie, C.M., Teugels, C.M.: Regular Variation. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  2. Cai, J., Tang, Q.: On max-type equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 41, 117–130 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. Cline, D.B.H.: Intermediate regular and Π variation. Proc. London Math. Soc. 68, 594–611 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. Embrechts, P., Omey, E.: A property of long tailed distributions. J. Appl. Probab. 21, 80–87 (1984)MATHCrossRefMathSciNetGoogle Scholar
  5. Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modelling teletraffic arrivals by a Poisson cluster process. Queueing Syst.: Theor. Appl. 54, 121–140 (2006)MATHCrossRefGoogle Scholar
  6. Leipus, R., Šiaulys, J.: Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes. Insur.: Math. Econ. 40, 498–508 (2007)MATHCrossRefGoogle Scholar
  7. Mikosch, T.: Non-Life Insurance Mathematics. Springer-Verlag, New York (2004)MATHGoogle Scholar
  8. Ng, K.W., Tang, Q.H., Yan, J.-A., Yang, H.: Precise large deviations for sums of random variables with consistently varying tails. J. Appl. Probab. 41, 93–107 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. Ng, K.W., Tang, Q.H., Yang, H.: Maxima of sums of heavy-tailed random variables. ASTIN Bull. 32, 43–55 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. Robert, C.Y., Segers, J.: Tails of random sums of a heavy-tailed number of light-tailed terms. Insur.: Math. Econ. (2007). doi:10.1016/j.insmatheco.2007.10.001
  11. Tang, Q.: Asymptotics for the finite time ruin probability in the renewal model with consistent variation. Stoch. Models 20, 281–297 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. Tang, Q., Su, C., Jiang, T., Zhang, J.: Large deviations for heavy–tailed random sums in compound renewal model. Stat. Probab. Lett. 52, 91–100 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aldona Aleškevičienė
    • 2
  • Remigijus Leipus
    • 1
    • 2
  • Jonas Šiaulys
    • 1
    • 2
  1. 1.Department of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Institute of Mathematics and InformaticsVilniusLithuania

Personalised recommendations