Skip to main content
Log in

Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

In the last decades there has been a shift from the parametric statistics of extremes for IID random variables, based on the probabilistic asymptotic results in extreme value theory, towards a semi-parametric approach, where the estimation of the right tail-weight, under a quite general framework, is of major importance. After a brief presentation of classical Gumbel’s block methodology and of later improvements in the parametric framework (multivariate and multi-dimensional extreme value models for largest observations and peaks over threshold approaches), we present a coordinated overview, over the last three decades, of the developments on the estimation of the extreme value index under a semiparametric framework. Laurens de Haan has been one of the leading scientists in the field, (co-)author of many seminal ideas, that he generously shared with dozens (literally) of colleagues and students, thus achieving one of the main goals in a scientist’s life: he gathered around him a bunch of colleagues united in the endeavour of building knowledge. The last section is a personal tribute to Laurens, who fully lives his ideal that co-operation is the heart of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarssen, K., de Haan, L.: On the maximal life span of humans. Mathematical Population Studies 4(4), 259–281 (1994)

    Article  MATH  Google Scholar 

  • Anderson, C.W.: Contributions to the asymptotic theory of extreme values. PhD Thesis, University of London (1971)

  • Araújo Santos, P., Fraga Alves, M.I., Gomes, M.I.: Peaks over random threshold methodology for tail index and quantile estimation. Revstat 4(3), 227–247 (2006)

    MATH  MathSciNet  Google Scholar 

  • Arnold, B., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Wiley, New York (1992)

    MATH  Google Scholar 

  • Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2, 792–804 (1974)

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Teugels, J., Vynckier, P.: Practical Analysis of Extreme Values. Leuven University Press, Leuven, Belgium (1996a)

    MATH  Google Scholar 

  • Beirlant, J., Vynckier, P., Teugels, J.: Excess functions and estimation of the extreme-value index. Bernoulli 2, 293–318 (1996b)

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Vynckier, P., Teugels, J.: Tail index estimation, Pareto quantile plots and regression J. Am. Stat. Assoc. 91, 1659–1667 (1996c)

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Teugels, J., Vynckier, P.: Some thoughts on extreme values. In: Accardi, L., Heyde, C.C. (eds.) Probability towards 2000. Lecture Notes in Statistics 128, 58–73, Springer, New York (1998)

    Google Scholar 

  • Beirlant, J., Dierckx, G., Goegebeur, Y., Matthys, G.: Tail index estimation and an exponential regression model. Extremes 2, 177–200 (1999)

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Dierckx, G., Guillou, A., Starica, C.: On exponential representations of log-spacings of extreme order statistics. Extremes 5(2), 157–180 (2002)

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley, England (2004)

    MATH  Google Scholar 

  • Beirlant, J., Dierckx, G., Guillou, A.: Estimation of the extreme-value index and generalized quantile plots. Bernoulli 11(6), 949–970 (2005)

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Figueiredo, F., Gomes, M.I., Vandewalle, B.: Improved reduced bias tail index and quantile estimators. J. Stat. Plan. Inference (2007). doi:10.1016/j.jspi.2007.07.015

  • Bingham, N.: Factorization theory and domains of attraction for generalized convolution algebras, Proc. London Math. Soc. 23(3), 16–30 (1971)

    MATH  MathSciNet  Google Scholar 

  • Bingham, N., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge Univ. Press, Cambridge (1987)

    MATH  Google Scholar 

  • Caeiro, F., Gomes, M.I.: A new class of estimators of a “scale” second order parameter. Extremes 9, 193–211 (2006)

    MATH  MathSciNet  Google Scholar 

  • Caeiro, F., Gomes, M.I., Pestana, D.: Direct reduction of bias of the classical Hill estimator. Revstat 3(2), 113–136 (2005)

    MATH  MathSciNet  Google Scholar 

  • Canto e Castro, L., de Haan, L., Temido, M.G.: Rarely observed maxima. Th. Prob. Appl. 45, 779–782 (2000)

    MathSciNet  Google Scholar 

  • Csörgő, S., Mason, D.M.: Central limit theorems for sums of extreme events. Math. Proc. Camb. Phil. Soc. 98, 547–558 (1985)

    Google Scholar 

  • Csörgő, S., Mason, D.M.: Simple estimators of the endpoint of a distribution. In: Hüsler, J., Reiss, R.-D. (ed.), Extreme Value Theory, Proceedings Oberwolfach 1987, 132–147, Springer-Verlag, Berlin, Heidelberg (1989)

    Google Scholar 

  • Csörgő, S., Viharos, L.: Estimating the tail index. In: Szyszkowicz, B. (ed.) Asymptotic Methods in Probability and Statistics, pp. 833–881, North-Holland, Amsterdam (1998)

    Google Scholar 

  • Csörgő, S., Deheuvels, P. Mason, D.: Kernel estimates of the tail index of a distribution. Ann. Stat. 13, 1050–1077 (1985)

    Google Scholar 

  • Danielsson, J., de Haan, L., Peng, L., de Vries, C.G.: Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivar. Anal. 76, 226–248 (2001)

    MATH  MathSciNet  Google Scholar 

  • David, H.A.: Order Statistics, 1st edition; 2nd edn. Wiley, New York (1970; 1981)

    Google Scholar 

  • David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edition. Wiley, Hoboken, New Jersey (2003)

    MATH  Google Scholar 

  • Davis, R., Resnick, S.: Tail estimates motivated by extreme value theory. Ann. Statist. 12, 1467–1487 (1984)

    MATH  MathSciNet  Google Scholar 

  • Davison, A.: Modeling excesses over high threshold with an application. In: Tiago de Oliveira J. (ed.) Statistical extremes and applications. D. Reidel, pp. 461–482 (1984)

  • Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. Royal Statist. Soc. B 52, 393–442 (1990)

    MathSciNet  Google Scholar 

  • de Haan, L.: On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tract 32, Amsterdam (1970)

  • de Haan, L.: Slow variation and characterization of domains of attraction. In: Tiago de Oliveira (ed.) Statistical Extremes and Applications, 31–48, D. Reidel, Dordrecht, Holland (1984)

  • de Haan, L.: On extreme value theory, or how to learn from almost disastrous events. Gulbenkian lecture (DVD with booklet) and abstract. In: Fraga Alves, M.I., Gomes, M.I. (eds.). Extremes Day in Honour of Laurens de Haan: Extremes, Risk, Safety and the Environment, vol. 1–2, CEAUL Editions, Lisboa (2006)

  • de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer Science+Business Media, LLC, New York (2006)

    MATH  Google Scholar 

  • de Haan, L., Peng, L.: Comparison of tail index estimators. Stat. Neerl. 52, 60–70 (1998)

    MATH  MathSciNet  Google Scholar 

  • de Haan, L., Resnick, S.: On asymptotic normality of the Hill estimator. Stoch. Models 14, 849–867 (1998)

    MATH  MathSciNet  Google Scholar 

  • de Haan, L., Rootzén, H.: On the estimation of high quantiles. J. Stat.. Plan. Inference 35, 1–13 (1993)

    MATH  Google Scholar 

  • de Haan, L., Stadtmüller, U.: Generalized regular variation of second order. J. Aust. Math. Soc. A61, 381–395 (1996)

    Google Scholar 

  • Deheuvels, P., Haeusler, E., Mason, D.M.: Almost sure convergence of the Hill estimator. Math. Proc. Camb. Philos. Soc. 104, 371–381 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Dekkers, A.L.M., de Haan, L.: On the estimation of the extreme-value index and large quantile estimation. Ann. Stat. 17, 1795–1832 (1989)

    MATH  MathSciNet  Google Scholar 

  • Dekkers, A.L.M., de Haan, L.: Optimal choice of sample fraction in extreme-value estimation. J. Multiv. Anal. 47, 173–195 (1993)

    MATH  MathSciNet  Google Scholar 

  • Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Statist. 17, 1833–1855 (1989)

    MATH  MathSciNet  Google Scholar 

  • Dijk, V., de Haan, L.: On the estimation of the exceedance probability of a high level. Order statistics and nonparametrics: theory and applications. In: Sen, P. K., Salama, I. A. (eds.) pp. 79–92, Elsevier, Amsterdam (1992)

  • Diebolt, J., Guillou, A.: Asymptotic behavior of regular estimators. Revstat 3(1), 19–44 (2005)

    MATH  MathSciNet  Google Scholar 

  • Doeblin, W.: Sur l’ensemble des puissances d’une loi de probabilités, Studia Math. 9, 71–96 (1940)

    MATH  MathSciNet  Google Scholar 

  • Draisma, G., de Haan, L., Peng, L., Themido Pereira, T.: A bootstrap-based method to achieve optimality in estimating the extreme value index. Extremes 2(4), 367–404 (1999)

    MATH  MathSciNet  Google Scholar 

  • Drees, H.: Refined Pickands estimator of the extreme value index. Ann. Stat. 23, 2059–2080 (1995)

    MATH  MathSciNet  Google Scholar 

  • Drees, H.: A general class of estimators of the extreme value index. J. Stat. Plan. Inference 66, 95–112 (1998)

    MATH  MathSciNet  Google Scholar 

  • Drees, H., Kaufmann, E.: Selecting the optimal sample fraction in univariate extreme value estimation. Stoch. Proc. their Appl. 75, 149–172 (1998)

    MATH  MathSciNet  Google Scholar 

  • Drees, H., de Haan, L., Resnick, S.: How to make a Hill plot. Ann. Stat. 28, 254–274 (2000)

    MATH  MathSciNet  Google Scholar 

  • Drees, H., Ferreira, A., de Haan, L.: On maximum likelihood estimation of the extreme value index. Ann. Appl. Probab. 14, 1179–1201 (2004)

    MATH  MathSciNet  Google Scholar 

  • Dwass, M.: Extremal processes. Ann. Math. Statist. 35, 1718–1725 (1964)

    MathSciNet  MATH  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin, Heidelberg (1997)

    MATH  Google Scholar 

  • Engeland, K., Hisdal, H., Frigessi, A.: Practical extreme value modelling of hydrological floods and droughts: a case tudy. Extremes 7(1), 5–30 (2004)

    MATH  MathSciNet  Google Scholar 

  • Falk, M.: A note on uniform asymptotic normality of intermediate order statistics. Ann. Inst. Stat. Math. 41, 19–29 (1989)

    MATH  MathSciNet  Google Scholar 

  • Falk, M.: Efficiency of a convex combination of Pickands estimator of the extreme value index. J. Nonparametr. Stat. 4, 133–147 (1994)

    MATH  MathSciNet  Google Scholar 

  • Falk, M.: Some best parameter estimates for distributions with finite endpoint. Statistics 27(1–2), 115–125 (1995)

    MATH  MathSciNet  Google Scholar 

  • Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events, 1st edn; 2nd edn, Birkhäuser, Basel (1994; 2004)

    Google Scholar 

  • Feller, W.: On regular variation and local limit theorems. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, II, Univ. California Press, Los Angeles (1967)

  • Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, Wiley, New York (1st ed. 1966) (1971)

    Google Scholar 

  • Ferreira, A.: Optimal asymptotic estimation of small exceedance probabilities. J. Stat. Plan. Inference 104, 83–102 (2002)

    MATH  Google Scholar 

  • Ferreira, A., de Haan L., Peng, L.: On optimizing the estimation of high quantiles of a probability distribution. Statistics 37(5), 401–434 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Feuerverger, A., Hall, P.: Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27, 760–781 (1999)

    MATH  MathSciNet  Google Scholar 

  • Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Camb. Philol. Soc 24, 180–190 (1928)

    MATH  Google Scholar 

  • Fraga Alves, M.I.: The influence of central observations on discrimination among multivariate extremal models. Theory of Probability and its Applications 32, 395–398 (1992)

    MathSciNet  Google Scholar 

  • Fraga Alves, M.I: Estimation of the tail parameter in the domain of attraction of an extremal distribution. Extreme Value Theory and Applications (Villeneuve d’Ascq, 1992) and J. Stat. Plan. Inference 45(1–2), 143–173 (1995)

  • Fraga Alves, M.I.: A location invariant Hill-type estimator. Extremes 4(3), 199–217 (2001)

    MATH  MathSciNet  Google Scholar 

  • Fraga Alves, M.I., Gomes, M.I. (eds.), Extremes Day in Honour of Laurens de Haan: Extremes, Risk, Safety and the Environment, CEAUL Editions, Lisboa (2006)

  • Fraga Alves, M.I., Gomes M.I., de Haan, L.: A new class of semi-parametric estimators of the second order parameter. Port. Math. 60(2), 193–213 (2003a)

    MATH  MathSciNet  Google Scholar 

  • Fraga Alves, M. I., de Haan, L. Lin, T.: Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12, 155–176 (2003b)

    MathSciNet  Google Scholar 

  • Fraga Alves, M. I., de Haan, L. Lin, T.: Third order extended regular variation. Publications de l’Institut Mathématique 80(94), 109–120 (2006)

    MathSciNet  Google Scholar 

  • Fraga Alves, M.I., Gomes, M.I., de Haan, L. Neves, C.: A note on second order condition in extreme value theory: linking general and heavy tails conditions. Revstat 5(3), 285–305 (2007a)

  • Fraga Alves, M.I., Gomes, M.I., de Haan, L. Neves, C.: Mixed Moment Estimator and Location Invariant Alternatives. Notas e Comunicações CEAUL 14/2007 (2007b) (submitted)

  • Fréchet, M.: Sur le loi de probabilité de l’écart maximum. Ann. Soc. Pol. Math. 6, 93–116 (1927)

    Google Scholar 

  • Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5(3), 219–235 (2002)

    MathSciNet  Google Scholar 

  • Galambos, J.: The Asymptotic Theory of Extreme Order Statistics, 1st edn: Wiley, New York; 2nd edn: Krieger, Malabar, Florida (1978; 1987)

  • Geluk, J., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems. CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, The Netherlands (1987)

  • Gnedenko, B.V.: On the theory of domains of attraction of stable laws. Uchenye Zapiski, Moskov Gos. Univ. 30, 61–72 (1940)

    Google Scholar 

  • Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    MathSciNet  Google Scholar 

  • Goldie, C., Smith, R.: Slow variation with remainder: theory and applications. Quart. J. Math. Oxford 38, 45–71 (1987)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I.: Some probabilistic and statistical problems in extreme value theory. PhD Thesis, Univ. Sheffield (1978)

  • Gomes, M.I.: An i-dimensional limiting distribution function of largest values and its relevance to the statistical theory of extremes. In: Taillie C., et al. (eds.) Statistical Distributions in Scientific Work, vol. 6, pp. 389–410, D. Reidel (1981)

  • Gomes, M.I.: Statistical theory of extremes—comparison of two approaches. Stat. Decis. 2, 33–37 (1985)

    MathSciNet  Google Scholar 

  • Gomes, M.I.: Comparison of extremal models through statistical choice in multidimensional backgrounds. In Hüsler, J., Reiss, R.-D. (eds.) Extreme Value Theory, Proc. Oberwolfach 1987. Lecture Notes in Statistics vol. 51, pp. 191–203. Springer-Verlag (1989)

  • Gomes, M.I.: Penultimate behaviour of the extremes. In: Galambos, J. et al. (eds.) Extreme value theory and applications, pp. 403–418, Kluwer, The Netherlands (1994)

    Google Scholar 

  • Gomes, M.I., de Haan, L.: Approximation by penultimate extreme–value distributions. Extremes 2(1), 71–85 (1999)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Figueiredo, F.: Bias reduction in risk modelling: semi-parametric quantile estimation. Test 15(2), 375–396 (2006)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Martins, M.J.: Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter. Extremes 5(1), 5–31 (2002)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Oliveira, O.: The bootstrap methodology in statistical extremes—the choice of the optimal sample fraction. Extremes 4(4), 331–358 (2001)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Oliveira, O.: How can non–invariant statistics work in our benefit in the semi–parametric estimation of parameters of rare events. Commun. Stat., Simul. Comput. 32(4), 1005–1028 (2003)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Pestana, D.: A simple second order reduced bias’ tail index estimator. J. Stat. Comput. Simul. 77(6), 487–504 (2007a)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., Pestana, D.: A sturdy reduced–bias extreme quantile (VaR) estimator. J. Am. Stat. Assoc. 102(477), 280–292 (2007b)

    MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., de Haan, L., Peng, L.: Semi-parametric estimation of the second order parameter—asymptotic and finite sample behaviour. Extremes 5(4), 387–414 (2002)

    MathSciNet  Google Scholar 

  • Gomes, M.I., de Haan, L., Henriques Rodrigues, L.: Tail index estimation for heavy-tailed models: accommodation of bias in the weighted log-excesses. J. Royal Statistical Society B, (2007a). doi:10.1111/j.1467-9869.2007.00620.x

  • Gomes, M.I., Martins, M.J., Neves, M.: Improving second order reduced bias extreme value index estimation. Revstat 5(2), 177–207 (2007b)

    MATH  MathSciNet  Google Scholar 

  • Gray, H.L., Schucany, W.R.: The Generalized Jackknife Statistic. Marcel Dekker (1972)

  • Grienvich, I.V.: Max–semistable laws corresponding to linear and power normalizations. Th. Probab. Appl. 37, 720–721 (1992a)

    Google Scholar 

  • Grienvich, I.V.: Domains of attraction of max–semistable laws under linear and power normalizations. Th. Probab. Appl. 38, 640–650 (1992b)

    Google Scholar 

  • Groeneboom, P., LopuhaŁ, H.P., de Wolf, P.P.: Kernel–type estimators for the extreme value index. Ann. Stat. 31, 1956–1995 (2003)

    MATH  Google Scholar 

  • Guillou, A., Hall, P.: A diagnostic for selecting the threshold in extreme–value analysis. J. R. Stat. Soc. B 63, 293– 305 (2001)

    MathSciNet  Google Scholar 

  • Gumbel, E.J.: Les valeurs extrêmes des distribution statistiques. Ann. Inst. Henri Poincaré 5, 115–158 (1935)

    MATH  MathSciNet  Google Scholar 

  • Gumbel, E.J.: Statistics of Extremes. Columbia Univ. Press, New York (1958)

    MATH  Google Scholar 

  • Haeusler, E., Teugels, J.: On asymptotic normality of Hill’s estimator for the exponent of regular variation. Ann. Stat. 13, 743–756 (1985)

    MATH  MathSciNet  Google Scholar 

  • Hall, P.: On estimating the endpoint of a distribution. Ann. Statist. 10, 556–568 (1982a)

    MATH  MathSciNet  Google Scholar 

  • Hall, P.: On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. B44, 37–42 (1982b)

    MATH  Google Scholar 

  • Hall, P.: Using the bootstrap to estimate mean–square error and selecting smoothing parameter in non–parametric problems. J. Multivar. Anal. 32, 177–203 (1990)

    MATH  Google Scholar 

  • Hall, P., Welsh, A.W.: Adaptive estimates of parameters of regular variation. Ann. Stat. 13, 331–341 (1985)

    MATH  MathSciNet  Google Scholar 

  • Hill, B: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3, 1163–1174 (1975)

    MATH  MathSciNet  Google Scholar 

  • Jenkinson, A.F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc 81, 158–171 (1955)

    Google Scholar 

  • Karamata, J.: Sur un mode de croissance régulière des fonctions, Mathematica (Cluj), 4, 38–53 (1930)

    MATH  Google Scholar 

  • Kaufmann, E.: Penultimate approximations in extreme value theory. Extremes 3(1), 39–55 (2000)

    MathSciNet  Google Scholar 

  • Kratz, M., Resnick, S.: The qq–estimator of the index of regular variation. Comm. Statist.—Stochastic Models 12, 699–724 (1996)

    MATH  MathSciNet  Google Scholar 

  • Lamperti, J.: On extreme order statistics. Ann. Math. Stat. 35, 1726–1737 (1964)

    MathSciNet  MATH  Google Scholar 

  • Mason, D.M.: Laws of large numbers for sums of extreme values. Ann. Probab. 10, 754–764 (1982)

    MATH  MathSciNet  Google Scholar 

  • Matthys, G., Beirlant, J.: Adaptive threshold selection in tail index estimation. In: Embrechts, P. (ed.) Extremes and Integrated Risk Management, pp. 37–57, UBS, Warburg (2000)

  • Matthys, G., Beirlant, J.: Estimating the extreme value index and high quantiles with exponential regression models. Stat. Sin. 13, 853–880 (2003)

    MATH  MathSciNet  Google Scholar 

  • Matthys, G., Delafosse, M., Guillou, A., Beirlant, J.: Estimating catastrophic quantile levels for heavy–tailed distributions. Insurance: Mathematics and Economics 34, 517–537 (2004)

    MathSciNet  MATH  Google Scholar 

  • Oliveira, O., Gomes, M.I., Fraga Alves, M.I.: Improvements in the estimation of a heavy tail. Revstat 4(2), 81–109 (2006)

    MATH  MathSciNet  Google Scholar 

  • Pancheva, E.: Multivariate max–semistable distributions. Th. Probab. Appl. 37, 731–732 (1992)

    Google Scholar 

  • Peng, L.: Asymptotically unbiased estimator for the extreme–value index. Stat. Probab. Lett. 38(2), 107–115 (1998)

    Google Scholar 

  • Pickands III, J.: Statistical inference using extreme order statistics. Ann. Statist. 3, 119–131 (1975)

    MATH  MathSciNet  Google Scholar 

  • Raoult, J.P., Worms, R.: Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Appl. Probab. 35(4), 1007–1027 (2003)

    MATH  MathSciNet  Google Scholar 

  • Reiss, R.-D., Thomas, M.: Statistical Analysis of Extreme Values, with Application to Insurance, Finance, Hydrology and Other Fields, 2nd edition; 3rd edition, Birkhäuser Verlag (2001; 2007)

  • Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer Verlag, New York (1987)

    MATH  Google Scholar 

  • Schultze, J., Steinbach, J.: On least squares estimators of an exponential tail coefficient. Stat. Decis. 14, 353–372 (1996)

    MATH  Google Scholar 

  • Segers, J.: Generalized Pickands estimators for the extreme value index. J. Stat. Plan. Inference 28, 381–396 (2005)

    MathSciNet  Google Scholar 

  • Smirnov, N.: Limit distributions for terms of a variational series (in russian). Trudy Mat. Inst. Steklov 25; translation: Am. Math. Soc. Trans. 67, 82–143 (1949; 1952)

  • Smith, R.L.: Extreme value theory based on their largest annual events. J. Hydrol. 86, 27–43 (1986)

    Google Scholar 

  • Smith, R.L.: Estimating tails of probability distributions. Ann. Statist. 15, 1174–1207 (1987)

    MATH  MathSciNet  Google Scholar 

  • Tawn, J.: An extreme value theory model for dependent observations. J. of Hydrol. 101, 227–250 (1988)

    Google Scholar 

  • Temido, M.G., Gomes, M.I., and Canto e Castro, L.: Inferência estatística em modelos max–semiestáveis. In: Oliveira, P., E. Athayde (eds.) Um Olhar sobre a Estatística, 291–305, S.P.E. Editions (2000) (in Portuguese)

  • Themido Pereira, T.: Second order behavior of domains of attraction and the bias of generalized Pickands’ estimator. In: Lechner, J., Galambos, J., Simiu E. (eds.) Extreme Value Theory and Applications III, Proc. Gaithersburg Conference (NIST special publ.) (1993)

  • von Mises, R.: La distribution de la plus grande de n valeurs. Revue Math. Union Interbalcanique 1, 141–160 (1936) (Reprinted in Selected Papers of Richard von Mises, II, Am. Math. Soc. 2, 271–294 (1964))

    Google Scholar 

  • Weissman, I.: Multivariate extremal processes generated by independent non–identically distributed random variables. J. Appl. Probab. 12, 477–487 (1975)

    MathSciNet  MATH  Google Scholar 

  • Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73, 812–815 (1978)

    MATH  MathSciNet  Google Scholar 

  • Weissman, I.: Statistical estimation in extreme value theory. In: Tiago de Oliveira, J. (ed.) Statistical Extremes and Applications, pp. 109–115. D. Reidel, Dordrecht (1984)

    Google Scholar 

  • Yun, S.: On a generalized Pickands estimator of the extreme value index. J. Stat. Plan. Inference 102, 389–409 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ivette Gomes.

Additional information

To Laurens de Haan, a token of friendship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, M.I., Canto e Castro, L., Fraga Alves, M.I. et al. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions. Extremes 11, 3–34 (2008). https://doi.org/10.1007/s10687-007-0048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-007-0048-9

Keywords

AMS 2000 Subject Classification

Navigation