Skip to main content
Log in

Extremes of Integer-Valued Moving Average Models with Exponential Type Tails

  • Original Article
  • Published:
Extremes Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Al-osh, M. and Alzaid, A., “First order integer-valued autoregressive INAR(1) process,” J. Time Ser. Anal. 8, 261–275, (1987).

    MATH  MathSciNet  Google Scholar 

  • Al-osh, M. and Alzaid, A., “Integer-valued moving average (INMA) process,” Stat. Pap. 29, 281–300, (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, C., “Extreme value theory for a class of discrete distributions with applications to some stochastic processes,” J. Appl. Probab. 7, 99–113, (1970).

    MATH  Google Scholar 

  • Böckenholt, U., “Mixed INAR(1) poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data,” J. Econom. 89(1–2), 317–338, (1999).

    MATH  Google Scholar 

  • Brännäs, K. and Hall, A., “Estimation in integer-valued moving average models,” Appl. Stoch. Models Bus. Ind. 17, 277–291, (2001).

    MATH  MathSciNet  Google Scholar 

  • Feller, W., An Introduction to Probability Theory and its Applications, vol. II. John Wiley & Sons, New York, 1971.

    MATH  Google Scholar 

  • Franke, J. and Seligmann, T., “Conditional maximum likelihood estimates for INAR(1) processes and their application to modelling epileptic seizure counts,” in Developments in Time Series Analysis (T. Subba Rao, ed), In honour of Maurice B. Priestley. Chapman Hall, London, 310–330, 1993.

    Google Scholar 

  • Fuller, W., Introduction to Statistical Time Series, John Wiley & Sons, New York, 1976.

    MATH  Google Scholar 

  • Hall, A., “Maximum term of a particular sequence with discrete margins,” Commun. Stat. Theory Methods 25, 721–736, (1996).

    MATH  Google Scholar 

  • Hall, A., “Extremes of integer-valued moving average models with regularly varying tails,” Extremes 4(3), 219–239, (2001).

    MATH  MathSciNet  Google Scholar 

  • Hall, A., A Note on Discrete Self-Decomposable Distributions. Technical report, CM03/I-08, Department of Mathematics, University of Aveiro, 2003.

  • Jorgensen, B. and Song, P., “Stationary time series models with exponential dispersion model margins,” J. Appl. Probab. 35, 72–92, (1998).

    Google Scholar 

  • Leadbetter, M.R., Lindgren, G. and Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, 1983.

  • McCormick, W. and Park, Y., “Asymptotic analysis of extremes from autoregressive negative binomial processes,” J. Appl. Probab. 29, 904–920, (1992a).

    MATH  MathSciNet  Google Scholar 

  • McCormick, W. and Park, Y., “Approximating the distribution of the maximum queue length for MMs queues,” in Queueing Theory and Related Processes (I. Basawa and U. Bhat, eds), Oxford University Press, Oxford, (1992b).

    Google Scholar 

  • MacDonald, I. and Zucchini, W., Hidden Markov and Other Models for Discrete-Valued Time Series, Chapman & Hall, London, 1997.

    MATH  Google Scholar 

  • McKenzie, E., “Some ARMA models for dependent sequences of Poisson counts,” Adv. Appl. Probab. 20, 822–835, (1988).

    MATH  MathSciNet  Google Scholar 

  • Resnick, S., Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987.

  • Rootzen, H., “Extreme value theory for moving average processes,” Ann. Probab. 14, 612–652, (1986).

    MATH  MathSciNet  Google Scholar 

  • Serfozo, R.F., “Extreme values of queue lengths in M–G–q and GI–M–1 systems,” Math. Oper. Res. 13, 349–357, (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Tucker, H., A Graduate Course in Probability, Academic Press, New York and London, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Hall.

Additional information

*Contract/grant sponsors: POCTI/33477/Mat/2000, FCT plurianual funding of the R&D unit “Mathematics and Applications”, University of Aveiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, A. Extremes of Integer-Valued Moving Average Models with Exponential Type Tails. Extremes 6, 361–379 (2003). https://doi.org/10.1007/s10687-004-4725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-004-4725-z

Keywords

Navigation