Skip to main content
Log in

Ground calibration result of the Lobster Eye Imager for Astronomy

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We report on results of the on-ground X-ray calibration of the Lobster Eye Imager for Astronomy (LEIA), an experimental space wide-field (18.6 \(\times \) 18.6 square degrees) X-ray telescope built from novel lobster eye micro-pore optics. LEIA was successfully launched on July 27, 2022 onboard the SATech-01 satellite. To achieve full characterisation of its performance before launch, a series of tests and calibrations have been carried out at different levels of devices, assemblies and the complete module. In this paper, we present the results of the end-to-end calibration campaign of the complete module carried out at the 100-m X-ray Test Facility at the Institute of High-energy Physics, Chinese Academy of Sciences (CAS). The Point Spread Function (PSF), effective area and energy response of the detectors were measured in a wide range of incident directions at several characteristic X-ray line energies. Specifically, the distributions of the PSF and effective areas are roughly uniform across the FoV, in large agreement with the prediction of lobster-eye optics. The mild variations and deviations from the prediction of idealized, perfect lobster-eye optics can be understood to be caused by the imperfect shapes and alignment of the micro-pores as well as the obscuration of incident photons by the supporting frames, which can be well reproduced by Monte Carlo simulations. The spatial resolution of LEIA defined by the full width at half maximum (FWHM) of the focal spot ranges from \(\textbf{4}\) to \(\textbf{8}\) arc minutes with a median of \(\mathbf{5.7}\) arcmin. The measured effective areas are in range of \(\mathbf{2-3}~\mathbf {cm^2}\) at \(\mathbf{\sim }\)1.25 keV across the entire FoV, and its dependence on photon energy is also in large agreement with simulations. The gains of the four complementary metal-oxide semiconductor (CMOS) sensors are in range of \(\mathbf{6.5-6.9}~\mathbf {eV/DN}\), and the energy resolutions in the range of \(\mathbf{\sim 120 - 140}\) eV at \(\mathbf{1.25}\) keV and \(\mathbf{\sim 170-190}\) eV at \(\mathbf{4.5}\) keV. These calibration results have been ingested into the first version of calibration database (CALDB) and applied to the analysis of the scientific data acquired by LEIA. This work paves the way for the calibration of the Wide-field X-Ray Telescope (WXT) flight model modules of the Einstein Probe (EP) mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data supports the findings of the study are not openly available due to the intellectual property belong to the partners and are available from the corresponding author upon reasonable request.

Notes

  1. The Einstein Probe is a time-domain X-ray mission of the Chinese Academy of Sciences (CAS) in collaboration with the European Space Agency (ESA), the Max-Planck Institute for Extraterrestrial Physics (MPE) and the France Space Agency (CNES).

  2. The focal surface of the lobster eye optics is a sphere with a radius of half the curvature of the optic.

  3. In this paper, the region to extract the photons of the focal spot is defined as a circle centered on the bary-center of the PSF with a radius of 1.25 mm (corresponding to 11.5 arcmin). Within this aperture the photons are dominated by those from the focal spot, with little contamination from the cruciform arms (e.g. at the energy of Mg K\(\alpha \) line the contribution of the cruciform arms to the total counts is found to be generally less than 5 per cent, which is smaller than the measurement error of the effective area).

  4. The Cu L\(\alpha \) line is excluded due to its asymmetric profile that may introduce uncertainties to the determination of the line energy.

References

  1. Angel, J.R.P.: Lobster eyes as X-ray telescopes. Astrophys. J. 233, 364–373 (1979). https://doi.org/10.1086/157397

    Article  ADS  Google Scholar 

  2. Fraser, G.W., Lees, J.E., Pearson, J.F., Sims, M.R., Roxburgh, K.: X-ray focusing using microchannel plates. In: Hoover R.B. (ed.) Multilayer and Grazing Incidence X-Ray/EUV Optics. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1546, pp. 41–52 (1992). https://doi.org/10.1117/12.51224

  3. Willingale, R., Fraser, G.W., Brunton, A.N., Martin, A.P.: Hard X-ray imaging with microchannel plate optics. Exp. Astron. 8(4), 281–296 (1998)

    Article  ADS  Google Scholar 

  4. Fraser, G.W., Brunton, A.N., Bannister, N.P., Pearson, J.F., Ward, M., Stevenson, T.J., Watson, D.J., Warwick, B., Whitehead, S., O’Brian, P., White, N., Jahoda, K., Black, K., Hunter, S.D., Deines-Jones, P., Priedhorsky, W.C., Brumby, S.P., Borozdin, K.N., Vestrand, T., Fabian, A.C., Nugent, K.A., Peele, A.G., Irving, T.H., Price, S., Eckersley, S., Renouf, I., Smith, M., Parmar, A.N., McHardy, I.M., Uttley, P., Lawrence, A.: LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. In: Flanagan K.A., Siegmund O.H.W. (eds.) X-Ray and Gamma-Ray Instrumentation for Astronomy XII. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4497, pp. 115–126 (2002). https://doi.org/10.1117/12.454217

  5. Willingale, R., Pearson, J.F., Martindale, A., Feldman, C.H., Fairbend, R., Schyns, E., Petit, S., Osborne, J.P., O’Brien, P.T.: Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes. In: den Herder J.-W.A., Takahashi T., Bautz M. (eds.) Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905, pp. 99051 (2016). https://doi.org/10.1117/12.2232946

  6. Ling, Z.X., Sun, X.J., Zhang, C., Sun, S.L., Jin, G., Zhang, S.N., Zhang, X.F., Chang, J.B., Chen, F.S., Chen, Y.F., Cheng, Z.W., Fu, W., Han, Y.X., Li, H., Li, J.F., Li, Y., Li, Z.D., Liu, P.R., Lv, Y.H., Ma, X.H., Tang, Y.J., Wang, C.B., Xie, R.J., Xue, Y.L., Yan, A.L., Zhang, Q., Bao, C.Y., Cai, H.B., Cheng, H.Q., Cui, C.Z., Dai, Y.F., Fan, D.W., Hu, H.B., Hu, J.W., Huang, M.H., Jia, Z.Q., Jin, C.C., Li, D.Y., Li, J.Q., Liu, H.Y., Liu, M.J., Liu, Y., Pan, H.W., Qiu, Y.L., Sugizaki, M., Sun, H., Wang, W.X., Wang, Y.L., Wu, Q.Y., Xu, X.P., Xu, Y.F., Yang, H.N., Yang, X., Zhang, B., Zhang, M., Zhang, W.D., Zhang, Z., Zhao, D.H., Cong, X.Q., Jiang, B.W., Li, L.H., Qiu, X.B., Sun, J.N., Su, D.T., Wang, J., Wu, C., Xu, Z., Yang, X.M., Zhang, S.K., Zhang, Z., Zhang, N., Zhu, Y.F., Ban, H.Y., Bi, X.Z., Cai, Z.M., Chen, W., Chen, X., Chen, Y.H., Cui, Y., Duan, X.L., Feng, Z.G., Gao, Y., He, J.W., He, T., Huang, J.J., Li, F., Li, J.S., Li, T.J., Li, T.T., Liu, H.Q., Liu, L., Liu, R., Liu, S., Meng, N., Shi, Q., Sun, A.T., Wang, Y.M., Wang, Y.B., Wu, H.C., Xu, D.X., Yang, Y.Q., Yang, Y., Yu, X.S., Zhang, K.X., Zhang, Y.L., Zhang, Y.H., Zhang, Y.T., Zhou, H., Zhu, X.C., Cheng, J.S., Qin, L., Wang, L., Wang, Q.L., Bai, M., Gao, R.L., Ji, Z., Liu, Y.R., Ma, F.L., Shi, Y.J., Su, J., Tan, Y.Y., Tong, J.Z., Xu, H.T., Xue, C.B., Xue, G.F., Yuan, W.: The Lobster Eye Imager for Astronomy Onboard the SATech-01 Satellite. Res Astron Astrophys 23(9), 095007 (2023). https://doi.org/10.1088/1674-4527/acd593. arXiv:2305.14895 [astro-ph.IM]

  7. Yuan, W., Zhang, C., Feng, H., Zhang, S.N., Ling, Z.X., Zhao, D., Deng, J., Qiu, Y., Osborne, J.P., O’Brien, P., Willingale, R., Lapington, J., Fraser, G.W., the Einstein Probe team: Einstein Probe - a small mission to monitor and explore the dynamic X-ray Universe. arXiv e-prints, 1506–07735 (2015). arXiv:1506.07735 [astro-ph.HE]

  8. Yuan, W., Zhang, C., Ling, Z., Zhao, D., Wang, W., Chen, Y., Lu, F., Zhang, S.-N., Cui, W.: Einstein Probe: a lobster-eye telescope for monitoring the x-ray sky. In: den Herder J.-W.A., Nikzad S., Nakazawa K. (eds.) Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, pp. 1069925 (2018). https://doi.org/10.1117/12.2313358

  9. Yuan, W., Zhang, C., Chen, Y., Ling, Z.: The Einstein Probe Mission. In: Handbook of X-ray and Gamma-ray Astrophysics, pp. 86 (2022). https://doi.org/10.1007/978-981-16-4544-0_151-1

  10. Zhang, C., Ling, Z.X., Sun, X.J., Sun, S.L., Liu, Y., Li, Z.D., Xue, Y.L., Chen, Y.F., Dai, Y.F., Jia, Z.Q., Liu, H.Y., Zhang, X.F., Zhang, Y.H., Zhang, S.N., Chen, F.S., Cheng, Z.W., Fu, W., Han, Y.X., Li, H., Li, J.F., Li, Y., Liu, P.R., Ma, X.H., Tang, Y.J., Wang, C.B., Xie, R.J., Yan, A.L., Zhang, Q., Jiang, B.W., Jin, G., Li, L.H., Qiu, X.B., Su, D.T., Sun, J.N., Xu, Z., Zhang, S.K., Zhang, Z., Zhang, N., Bi, X.Z., Cai, Z.M., He, J.W., Liu, H.Q., Zhu, X.C., Cheng, H.Q., Cui, C.Z., Fan, D.W., Hu, H.B., Huang, M.H., Jin, C.C., Li, D.Y., Pan, H.W., Wang, W.X., Xu, Y.F., Yang, X., Zhang, B., Zhang, M., Zhang, W.D., Zhao, D.H., Bai, M., Ji, Z., Liu, Y.R., Ma, F.L., Su, J., Tong, J.Z., Wang, Y.S., Zhao, Z.J., Feldman, C., O’Brien, P., Osborne, J.P., Willingale, R., Burwitz, V., Hartner, G., Langmeier, A., Müller, T., Rukdee, S., Schmidt, T., Kuulkers, E., Yuan, W.: First Wide Field-of-view X-Ray Observations by a Lobster-eye Focusing Telescope in Orbit. Astrophys J Lett 941(1), 2 (2022). https://doi.org/10.3847/2041-8213/aca32f. arXiv:2211.10007 [astro-ph.HE]

  11. Wu, Q., Jia, Z., Wang, W., Ling, Z., Zhang, C., Zhang, S., Yuan, W.: X-Ray Performance of a Customized Large-format Scientific CMOS Detector. Publ. Astron. Soc. Pac. 134(1033), 035006 (2022). https://doi.org/10.1088/1538-3873/ac5ac9

    Article  ADS  Google Scholar 

  12. Wu, Q., Ling, Z., Zhang, C., Zhang, S.-N., Yuan, W.: An aluminum-coated scmos sensor for x-ray astronomy. Publ. Astron. Soc. Pac. 135(1053), 115002 (2023). https://doi.org/10.1088/1538-3873/ad03d7

    Article  ADS  Google Scholar 

  13. Freyberg, M.J., Bräuninger, H., Burkert, W., Hartner, G.D., Citterio, O., Mazzoleni, F., Pareschi, G., Spiga, D., Romaine, S., Gorenstein, P., Ramsey, B.D.: The MPE X-ray test facility PANTER: Calibration of hard X-ray (15–50 kev) optics. Exp. Astron. 20(1–3), 405–412 (2005). https://doi.org/10.1007/s10686-006-9068-8

    Article  ADS  Google Scholar 

  14. Bradshaw, M., Burwitz, V., Hartner, G., Pelliciari, C., Langmeier, A., Liao, Y., Friedrich, P., Valsecchi, G., Barrière, N., Collon, M.J., Vacanti, G.: Developments in testing x-ray optics at MPE’s PANTER facility. In: O’Dell S.L., Pareschi G. (eds.) Optics for EUV, X-Ray, and Gamma-Ray Astronomy IX. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11119, pp. 1111916 (2019). https://doi.org/10.1117/12.2531709

  15. Rukdee, S., Burwitz, V., Hartner, G., MuÌller, T., Schmidt, T., Langmeier, A., Friedrich, P., Feldman, C., O’Brien, P., Willingale, R., Zhang, C., Ling, Z., Yuan, W.: The X-ray testing of Einstein Probe Wide-field X-ray Telescope Qualification Model at PANTER. In: Minoglou K., Karafolas N., Cugny B. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 12777, pp. 127773 (2023). https://doi.org/10.1117/12.2690354

  16. Zhang, C., Ling, Z., Zhang, S.-N.: Development of the super-high angular resolution principle for x-ray imaging: experimental demonstrations. In: Takahashi T., Murray S.S., den Herder J.-W.A. (eds.) Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8443, pp. 84433 (2012). https://doi.org/10.1117/12.925780

  17. Wang, Y., Zhao, Z., Hou, D., Yang, X., Chen, C., Li, X., Zhu, Y., Zhao, X., Ma, J., Xu, H., Chen, Y., Wang, G., Lu, F., Zhang, S., Zhang, S., Chen, Y., Xu, Y.: The 100-m X-ray test facility at IHEP. Exp. Astron. 55(2), 427–445 (2023). https://doi.org/10.1007/s10686-022-09872-7. arXiv:2210.15840 [astro-ph.IM]

  18. Zhao, D., Zhang, C., Yuan, W., Willingale, R., Ling, Z., Feng, H., Li, H., Ji, J., Wang, W., Zhang, S.: Ray tracing simulations for the wide-field x-ray telescope of the Einstein Probe mission based on Geant4 and XRTG4. In: Takahashi T., den Herder J.-W.A., Bautz M. (eds.) Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144, pp. 91444 (2014). https://doi.org/10.1117/12.2055434

  19. Li, L., Zhang, C., Jin, G., Yuan, W., Zhang, S., Li, Z., Gu, Y., Wang, J., Zhang, Z., Zhang, Z., Xu, Z., Jiang, B., Wu, C., Liao, D., Ling, Z., Zhao, D.: Study on the optical properties of Angel Lobster eye X-ray flat micro pore optical device. Opt. Commun. 483, 126656 (2021). https://doi.org/10.1016/j.optcom.2020.126656

    Article  Google Scholar 

  20. Li, L., Zhang, Y., Ouyang, M., Wang, J., Zhang, Z., Zhang, C., Ling, Z., Fang, J., Fu, Y.: Fabrication and Performance of Lobster Eye X-Ray Micro Pore Optics with the Ultra-high Aspect Ratio. Publ. Astron. Soc. Pac. 134(1041), 115002 (2022). https://doi.org/10.1088/1538-3873/ac9f6d

    Article  ADS  Google Scholar 

  21. Zhao, D., Zhang, C., Yuan, W., Zhang, S., Willingale, R., Ling, Z.: Geant4 simulations of a wide-angle x-ray focusing telescope. Exp. Astron. 43(3), 267–283 (2017). https://doi.org/10.1007/s10686-017-9534-5. arXiv:1703.09380 [astro-ph.IM]

  22. Feldman, C., O’Brien, P., Willingale, R., Zhang, C., Ling, Z., Yuan, W., Jia, Z., Jin, G., Li, L., Xu, Z., Zhang, Z., Lerman, H., Hutchinson, I., McHugh, M., Lodge, A.: Testing of the WXT optics at the University of Leicester. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11444, pp. 114447 (2020). https://doi.org/10.1117/12.2562194

Download references

Acknowledgements

We thank all the members of the EP team, the EP consortium, and the SATech-01 team. The CAS team acknowledge contribution from ESA for calibration of the mirror assembly and tests of part of the devices. The Leicester and MPE teams acknowledge funding by ESA.

Funding

This work is supported by the Einstein Probe project, a mission in the Strategic Priority Program on Space Science of CAS (grant Nos. XDA15310000, XDA15052100), and the National Science Foundation of China (grant no. 12173055, 12173057, 12203071).

Author information

Authors and Affiliations

Authors

Contributions

H.-Q.C. and Z.-X.L. led the paper writing. C.Z. led the calibration experiment design and data analysis. W.-M.Y.contributed to the improvement of the manuscript. Z.-X.L., C.Z., W.-X.W., Y.-F.D, D.-H.Z., Z.-Q.J., X.-J.S., S.-L.S., Y.-F.C., Z.-W.C., W.F., Y.-X.H., J.-F.L., Z.-D.L., X.-H.M., Y.-L.X., A.-L.Y., Q.Z. and W.-M.Y. contributed to the design and development the instrument. H.-Q.C., Z.-X.L., C.Z.,D.-H.Z., Y.-F.D., Z.-Q.J., X.-J.S., Y.-F.C., Z.-W.C., Y.-X.H., J.-F.L., Z.-D.L., X.-H.M., Y.-L.X. participated in the calibration experiment. H.-Q.C., Z.-X.L., C.Z., Y.L., H.-W.P., W.-X.W., D.-H.Z. contributed to the analysis of calibration data. Y.-S.W. is responsible for the construction of the test facility. X.-T.Y. and Z.-J.Z. led the experimental setup and data acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhixing Ling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Ling, Z., Zhang, C. et al. Ground calibration result of the Lobster Eye Imager for Astronomy. Exp Astron 57, 10 (2024). https://doi.org/10.1007/s10686-024-09932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09932-0

Keywords

Navigation