Skip to main content
Log in

Science with the Daksha high energy transients mission

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We present the science case for the proposed Daksha high energy transients mission. Daksha will comprise of two satellites covering the entire sky from 1 keV to \(>1\) MeV. The primary objectives of the mission are to discover and characterize electromagnetic counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science cases. With its broadband spectral response, high sensitivity, and continuous all-sky coverage, it will discover fainter and rarer sources than any other existing or proposed mission. Daksha can make key strides in GRB research with polarization studies, prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source fluxes, the two satellites together will obtain daily flux measurements of bright hard X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like Novae. Correlation studies between the two satellites can be used to probe primordial black holes through lensing. Daksha will have a set of detectors continuously pointing towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the high sensitivity and time resolution of Daksha can be leveraged for the characterization of Terrestrial Gamma-ray Flashes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Daksha ( ) means “alert” in Marathi, Sanskrit, and related languages. It can also be interpreted as able or skillful.

  2. This implies that there is no bright jet even for face-on observers.

  3. Note \(\Delta t\) is estimated for the short GRB distribution only.

  4. GRB missions in the past have well out-lived their nominal mission lifetimes.

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B. et al.: LIGO Scientific Collaboration: Virgo Collaboration, Fermi Gamma-Ray Burst Monitor, INTEGRAL, Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a. Astrophys. J. 848, 13 (2017). https://doi.org/10.3847/2041-8213/aa920c

  2. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso P., Adhikari R.X., Adya V.P., Affeldt C., M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. Aguiar, L. Aiello, A. Ain, P. Ajith, O. Smirnov, R. Fender, Woudt, P. et al.: Multi-messenger Observations of a Binary Neutron Star Merger. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833. [astro-ph.HE]

  3. Watson, D., Hansen, C.J., Selsing, J., Koch, A., Malesani, D.B., Andersen, A.C., Fynbo, J.P.U., Arcones, A., Bauswein, A., Covino, S., Grado, A., Heintz, K.E., Hunt, L., Kouveliotou, C., Leloudas, G., Levan, A.J., Mazzali, P., Pian, E.: Identification of strontium in the merger of two neutron stars. Nature 574(7779), 497–500 (2019). https://doi.org/10.1038/s41586-019-1676-3. arXiv:1910.10510

  4. Kasliwal, M.M., Nakar, E., Singer, L.P., Kaplan, D.L., Cook, D.O., Van Sistine, A., Lau, R.M., Fremling, C., Gottlieb, O., Jencson, J.E., Adams, S.M., Feindt, U., Hotokezaka, K., Ghosh, S., Perley, D.A., Yu, P.C., Piran, T., Allison, J.R., Anupama, G.C., Balasubramanian, A., K.W. Bannister, J. Bally, J. Barnes, S. Barway, E. Bellm, V. Bhalerao, D. Bhattacharya, N. Blagorodnova, J.S. Bloom, P.R. Brady, C. Cannella, D. Chatterjee, S.B. Cenko, B.E. Cobb, C. Copperwheat, A. Corsi, K. De, D. Dobie, S.W.K. Emery, P.A. Evans, O.D. Fox, D.A. Frail, C. Frohmaier, A. Goobar, G. Hallinan, F. Harrison, G. Helou, T. Hinderer, A.Y.Q. Ho, A. Horesh, W.H. Ip, R. Itoh, D. Kasen, H. Kim, N.P.M. Kuin, T. Kupfer, C. Lynch, K. Madsen, P.A. Mazzali, A.A. Miller, K. Mooley, T. Murphy, C.C. Ngeow, D. Nichols, S. Nissanke, P. Nugent, E.O. Ofek, H. Qi, R.M. Quimby, S. Rosswog, F. Rusu, E.M. Sadler, P. Schmidt, J. Sollerman, I. Steele, A.R. Williamson, Y. Xu, L. Yan, Y. Yatsu, C. Zhang, Zhao, W.: Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 358(6370), 1559–1565 (2017). https://doi.org/10.1126/science.aap9455. URL https://science.sciencemag.org/content/358/6370/1559

  5. De, S., Finstad, D., Lattimer, J.M., Brown, D.A., Berger, E., Biwer, C.M.: Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. 121(9), 091102 (2018). https://doi.org/10.1103/PhysRevLett.121.091102. arXiv:1804.08583. [astro-ph.HE]

  6. Zhang, B.B., Zhang, B., Sun, H., Lei, W.H., Gao, H., Li, Y., Shao, L., Zhao, Y., Hu, Y.D., Lü, H.J., Wu, X.F., Fan, X.L., Wang, G., Castro-Tirado, A.J., Zhang, S., Yu, B.Y., Cao, Y.Y., Liang, E.W.: A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 9, 447 (2018). https://doi.org/10.1038/s41467-018-02847-3. arXiv:1710.05851 [astro-ph.HE]

    Article  ADS  Google Scholar 

  7. Hosseinzadeh, G., Cowperthwaite, P.S., Gomez, S., Villar, V.A., Nicholl, M. Margutti, R., Berger, E., Chornock, R., Paterson, K., Fong, W., Savchenko, V., Short, P., Alexander, K.D., Blanchard, P.K., Braga, J., Calkins, M.L., Cartier, R., Coppejans, D.L., Eftekhari, T., Laskar, T., Ly, C., Patton, L., Pelisoli, I., Reichart, D.E., Terreran, G., Williams, P.K.G.: Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. Astrophys. J. 880(1), L4 (2019). https://doi.org/10.3847/2041-8213/ab271c. arXiv:1905.02186

  8. Coughlin, M.W., Ahumada, T., Anand, S., De, K., Hankins, M.J., Kasliwal, M.M., Singer, L.P., Bellm, E.C., Andreoni, I., Cenko, S.B., Cooke, J., Copperwheat, C.M., Dugas, A.M., Jencson, J.E., Perley, D.A., Yu, P.C., Bhalerao, V., Kumar, H., Bloom, J.S., Anupama, G.C., Ashley, M.C.B., Bagdasaryan, A., Biswas, R., Buckley, D.A.H., Burdge, K.B., Cook, D.O., Cromer, J., Cunningham, V., D’Aì, A., Dekany, R.G., Delacroix, A., Dichiara, S., Duev, D.A., Dutta, A., Feeney, M., Frederick, S., Gatkine, P., Ghosh, S., Goldstein, D.A., Golkhou, V.Z., Goobar, A., Graham, M.J., Hanayama, H., Horiuchi, T., Hung, T., Jha, S.W., Kong, A.K.H., Giomi, M., Kaplan, D.L., Karambelkar, V.R., Kowalski, M., Kulkarni, S.R., Kupfer, T., La Parola, V., Masci, F.J., Mazzali, P., Moore, A.M., Mogotsi, M., Neill, J.D., Ngeow, C.C., Martínez-Palomera, J., Pavana, M., Ofek, E.O., Patil, A.S., Riddle, R., Rigault, M., Rusholme, B., Serabyn, E., Shupe, D.L., Sharma, Y., Sollerman, J., Soon, J., Staats, K., Taggart, K., Tan, H., Travouillon, T., Troja, E., Waratkar, G., Yatsu, Y.: GROWTH on S190425z: Searching thousands of square degrees to identify an optical or infrared counterpart to a binary neutron star merger with the Zwicky Transient Facility and Palomar Gattini IR. Astrophys. J. Lett. 885, L19 (2019). arXiv:1907.12645

  9. Schönfelder, V., Diehl, R., Lichti, G.G., Steinle, H., Swanenburg, B.N., Deerenberg, A.J.M., Aarts, H., Lockwood, J., Webber, W., Macri, J., Ryan, J., Simpson, G., Taylor, B.G., Bennett, K., Snelling, M.: The imaging compton telescope comptel on the gamma ray observatory. IEEE Trans. Nucl. Sci. 1, 766–770 (1984). https://doi.org/10.1109/TNS.1984.4333363

    Article  ADS  Google Scholar 

  10. D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, P. Lestrade, Batse observations of gamma-ray burst spectra. i - spectral diversity. Astrophys. J. 413, 281 (1993). https://doi.org/10.1086/172995

  11. Boella, G., Butler, R.C., Perola, G.C., Piro, L., Scarsi, L., Bleeker, J.A.M.: BeppoSAX, the wide band mission for X-ray astronomy. A &AS 122, 299–307 (1997). https://doi.org/10.1051/aas:1997136

    Article  ADS  Google Scholar 

  12. Ricker, G.R., Atteia, J.L., Crew, G.B., Doty, J.P., Fenimore, E.E., Galassi, M., Graziani, C., Hurley, K., Jernigan, J.G., Kawai, N., Lamb, D.Q., Matsuoka, M., Pizzichini, G., Shirasaki, Y., Tamagawa, T., Vanderspek, R., Vedrenne, G., Villasenor, J., Woosley, S.E., Yoshida, A.: In: Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission, American Institute of Physics Conference Series, vol. 662, ed. by G.R. Ricker, R.K. Vanderspek (2003), pp. 3–16. https://doi.org/10.1063/1.1579291

  13. Gehrels, N., Chincarini, G., Giommi, P., Mason, K.O., Nousek, J.A., Wells, A.A., White, N.E., Barthelmy, S.D., Burrows, D.N., Cominsky, L.R., Hurley, K.C., Marshall, F.E., Mészáros, P., Roming, P.W.A., Angelini, L., Barbier, L.M., Belloni, T., Campana, S., Caraveo, P.A., Chester, M.M., Citterio, O., Cline, T.L., Cropper, M.S., Cummings, J.R., Dean, A.J., Feigelson, E.D., Fenimore, E.E., Frail, D.A., Fruchter, A.S., Garmire, G.P., Gendreau, K., Ghisellini, G., Greiner, J., Hill, J.E., Hunsberger, S.D., Krimm, H.A., Kulkarni, S.R., Kumar, P., Lebrun, F., Lloyd-Ronning, N.M., Markwardt, C.B., Mattson, B.J., Mushotzky, R.F., Norris, J.P., Osborne, J., Paczynski, B., Palmer, D.M., Park, H.S., Parsons, A.M., Paul, J., Rees, M.J., Reynolds, C.S., Rhoads, J.E., Sasseen, T.P., Schaefer, B.E., Short, A.T., Smale, A.P., Smith, I.A., Stella, L., Tagliaferri, G., Takahashi, T., Tashiro, M., Townsley, L.K., Tueller, J., Turner, M.J.L., Vietri, M., Voges, W., Ward, M.J., Willingale, R., Zerbi, F.M., Zhang, W.W.: The Swift Gamma-Ray Burst Mission. The Astrophysical Journal 611(2), 1005–1020 (2004). https://doi.org/10.1086/422091, URL http://adsabs.harvard.edu/abs/2004ApJ...611.1005G

  14. Barthelmy, S.D., Barbier, L.M., Cummings, J.R., Fenimore, E.E., Gehrels, N., Hullinger, D., Krimm, H.A., Markwardt, C.B., Palmer, D.M., Parsons, A., Sato, G., Suzuki, M., Takahashi, T., Tashiro, M., Tueller, J.: The Burst Alert Telescope (BAT) on the Swift MIDEX Mission. Space Science Reviews, Volume 120, Issue 3–4, pp. 143–164 120, 143–164 (2005). https://doi.org/10.1007/s11214-005-5096-3. arXiv:0507410. [astro-ph]

  15. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: The fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009). https://doi.org/10.1088/0004-637X/702/1/791, URL http://stacks.iop.org/0004-637X/702/i=1/a=791?key=crossref.55ed2ad645b9c8942db3a7bafcc85a32

  16. Bhalerao, V., Bhattacharya, D., Vibhute, A., Pawar, P., Rao, A., Hingar, M., Khanna, R., Kutty, A., Malkar, J., Patil, M., Arora, Y., Sinha, S., Priya, P., Samuel, E., Sreekumar, S., Vinod, P., Mithun, N., Vadawale, S., Vagshette, N., Navalgund, K., Sarma, K., Pandiyan, R., Seetha, S., Subbarao, K.: The Cadmium Zinc Telluride Imager on AstroSat. J. Astrophys. Astron. 38, 31 (2017). https://doi.org/10.1007/s12036-017-9447-8. http://arxiv.org/abs/1608.03408. arXiv:1608.03408

  17. Produit, N., Barao, F., Deluit, S., Hajdas, W., Leluc, C., Pohl, M., Rapin, D., Vialle, J.P., Walter, R., Wigger, C.: POLAR, a compact detector for gamma-ray bursts photon polarization measurements. Nuclear Instruments and Methods in Physics Research A 550(3), 616–625 (2005). https://doi.org/10.1016/j.nima.2005.05.066, arXiv:astro-ph/0504605 [astro-ph]

  18. Yonetoku, D., Murakami, T., Gunji, S., Mihara, T., Toma, K., Sakashita, T., Morihara, Y., Takahashi, T., Toukairin, N., Fujimoto, H., Kodama, Y., Kubo, S.: IKAROS Demonstration Team: Detection of Gamma-Ray Polarization in Prompt Emission of GRB 100826A. ApJ 743(2), L30 (2011). https://doi.org/10.1088/2041-8205/743/2/L30. arXiv:1111.1779 [astro-ph.HE]

    Article  ADS  Google Scholar 

  19. Metzger, B.D., Quataert, E., Thompson, T.A.: Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Monthly Notices of the Royal Astronomical Society 385(3), 1455–1460 (2008). https://doi.org/10.1111/j.1365-2966.2008.12923.x

    Article  ADS  Google Scholar 

  20. Kumar, P., Zhang, B.: The physics of gamma-ray bursts relativistic jets. Phys. Rep. 561, 1–109 (2015). https://doi.org/10.1016/j.physrep.2014.09.008

    Article  ADS  Google Scholar 

  21. LIGO Scientific Collaboration, Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V., Affeldt, C., Aggarwal, N., Wilkinson, C., Williams, L., Williams, R., Williamson, A.R., Willis, J.L., Willke, B., Wimmer, M., Winkler, W., Wipf, C.C., Wittel, H., Woan, G., Worden, J., Xie, S., Yablon, J., Yakushin, I., Yam, W., Yamamoto, H., Yancey, C.C., Yang, Q., Zanolin, M., Zhang, F., Zhang, L., Zhang, M., Zhang, Y., Zhao, C., Zhou, M., Zhu, X.J., Zucker, M.E., Zuraw, S., Zweizig, J., et al.: Advanced LIGO. Classical and Quantum Gravity 32(7), 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001. arXiv:1411.4547. [gr-qc]

  22. Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., Amarni, J., Astone, P., Balestri, G., Ballardin, G., Barone, F., Baronick, J.P., Barsuglia, M., Basti, A., Basti, F., Bauer, T.S., Bavigadda, V., Bejger, M., Beker, M.G., Belczynski, C., Bersanetti, D., Bertolini, A., Bitossi, M., Bizouard, M.A., Bloemen, S., Blom, M., Boer, M., Bogaert, G., Bondi, D., Vajente, G., van Bakel, N., van Beuzekom, M., van den Brand, J.F.J., Van Den Broeck, C., van der Sluys, M.V., van Heijningen, J., Vasúth, M., Vedovato, G., Veitch, J., Verkindt, D., Vetrano, F., Viceré, A., Vinet, J.Y., Visser, G., Vocca, H., Ward, R., Was, M., Wei, L.W., Yvert, M., żny, A.Z., Zendri, J.P. et al.: Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity 32(2), 024001 (2015). https://doi.org/10.1088/0264-9381/32/2/024001. arXiv:1408.3978. [gr-qc]

  23. KAGRA Collaboration, Akutsu, T., Ando, M., Arai, K., Arai, Y., Araki, S., Araya, A., Aritomi, N., Asada, H., Aso, Y., Bae, S., Bae, Y., Baiotti, L., Bajpai, R., Barton, M.A., Cannon, K., Cao, Z., Capocasa, E., Chan, M., Chen, C., Chen, K., Chen, Y., Chiang, C.Y., Chu, H., Chu, Y.K., Eguchi, S., Enomoto, Y., Flaminio, R., Fujii, Y., Fujikawa, F., Fukunaga, M., Fukushima, M., Gao, D., Ge, G., Ha, S., Hagiwara, A., Haino, S., Han, W.B., Hasegawa, K., Hattori, K., Ushiba, T., van Putten, M.H.P.M., Vocca, H., Wang, J., Washimi, T., Wu, C., Wu, H., Wu, S., Xu, W.R., Yamada, T., Yamamoto, K., Yamamoto, K., Yamamoto, T., Yamashita, K., Yamazaki, R., Yang, Y., Yokogawa, K., Yokoyama, J., Yokozawa, T., Yoshioka, T., Yuzurihara, H., Zeidler, S., Zhan, M., Zhang, H., Zhao, Y., Zhu, Z.H. et al.: Overview of KAGRA : KAGRA science. arXiv:2008.02921 (2020). [gr-qc]

  24. Iyer, B., et al., Ligo-india. tech. rep. m1100296-v2, indigo, india (2011). https://dcc.ligo.org/ligo-M1100296/public

  25. Saleem, M., Rana, J., Gayathri, V., Vijaykumar, A., Goyal, S., Sachdev, S., Suresh, J., Sudhagar, S., Mukherjee, A., Gaur, G., Sathyaprakash, B., Pai, A., Adhikari, R.X., Ajith, P., Bose, S.: The science case for LIGO-India. Classical and Quantum Gravity 39(2), 025004 (2022). https://doi.org/10.1088/1361-6382/ac3b99. arXiv:2105.01716. [gr-qc]

  26. Bellm, E.: The zwicky transient facility. The Third Hot-wiring the Transient Universe Workshop (HTU-III) pp. 27–33 (2014). http://adsabs.harvard.edu/abs/2014arXiv1410.8185B, http://adsabs.harvard.edu/abs/2014htu..conf...27B

  27. LSST Science Collaboration, Abell, P.A., Allison, J., Anderson, S.F., Andrew, J.R., Angel, J.R.P., Armus, L., Arnett, D., Asztalos, S.J., Axelrod, T.S., Bailey, S., Ballantyne, D.R., Bankert, J.R., Barkhouse, W.A., Barr, J.D., Barrientos, L.F., Barth, A.J., Bartlett, J.G., Becker, A.C., Becla, J., Beers, T.C., Bernstein, J.P., Biswas, R., Blanton, M.R., Young, P., Zentner, A., Zhan, H.: LSST Science Book, Version 2.0. arXiv e-prints arXiv:0912.0201 (2009). arXiv:0912.0201. [astro-ph.IM]

  28. Dewdney, P.E., Hall, P.J., Schilizzi, R.T., Lazio, T.J.L.W.: The Square Kilometre Array. IEEE Proceedings 97(8), 1482–1496 (2009). https://doi.org/10.1109/JPROC.2009.2021005

    Article  ADS  Google Scholar 

  29. Y. Gupta, B. Ajithkumar, H.S. Kale, S. Nayak, S. Sabhapathy, S. Sureshkumar, R.V. Swami, J.N. Chengalur, S.K. Ghosh, C.H. Ishwara-Chandra, B.C. Joshi, N. Kanekar, D.V. Lal, S. Roy: The upgraded GMRT: opening new windows on the radio Universe. Current Science 113(4), 707–714 (2017). https://doi.org/10.18520/cs/v113/i04/707-714

  30. van Haarlem, M.P., Wise, M.W., Gunst, A.W., Heald, G., McKean, J.P., Hessels, J.W.T., de Bruyn, A.G., Nijboer, R., Swinbank, J., Fallows, R., Brentjens, M., Nelles, A., Beck, R., Falcke, H., Fender, R., Hörandel, J., Koopmans, L.V.E., Mann, G., Miley, G., Röttgering, H., Stappers, B.W., Wijers, R.A.M.J., Zaroubi, S., van den Akker, M., Alexov, A., Anderson, J., Anderson, K., van Ardenne, A., Arts, M., Asgekar, A., Avruch, I.M., Batejat, F., Bähren, L., Bell, M.E., Bell, M.R., van Bemmel, I., Bennema, P., Bentum, M.J., Bernardi, G., Best, P., Bîrzan L., Bonafede, A., Boonstra, A.J., Braun, R., Bregman, J., Breitling, F., van de Brink, R.H., Broderick, J., Broekema, P.C., Brouw, W.N., Brüggen, M., Butcher, H.R., van Cappellen, W., Ciardi, B., Coenen, T., Conway, J., Coolen, A., Corstanje, A., Damstra, S., Davies, O., Deller, A.T., Dettmar, R.J., van Diepen, G., Dijkstra, K., Donker, P., Doorduin, A., Dromer, J., Drost, M., van Duin, A., Eislöffel, J., van Enst, J., Ferrari, C., Frieswijk, W., Gankema, H., Garrett, M.A., de Gasperin, F., Gerbers, M., de Geus, E., Grießmeier, J.M., Grit, T., Gruppen, P., Hamaker, J.P., Hassall, T., Hoeft, M., Holties, H.A., Horneffer, A., van der Horst, A., van Houwelingen, A., Huijgen, A., Iacobelli, M., Intema, H., Jackson, N., Jelic, V., de Jong, A., Juette, E., Kant, D., Karastergiou, A., Koers, A., Kollen, H., Kondratiev, V.I., Kooistra, E., Koopman, Y., Koster, A., Kuniyoshi, M., Kramer, M., Kuper, G., Lambropoulos, P., Law, C., van Leeuwen, J., Lemaitre, J., Loose, M., Maat, P., Macario, G., Markoff, S., Masters, J., McFadden, R.A., McKay-Bukowski, D., Meijering, H., Meulman, H., Mevius, M., Middelberg, E., Millenaar, R., Miller-Jones, J.C.A., Mohan, R.N., Mol, J.D., Morawietz, J., Morganti, R., Mulcahy, D.D., Mulder, E., Munk, H. Nieuwenhuis, L., van Nieuwpoort, R., Noordam, J.E., Norden, M., Noutsos, A., Offringa, A.R., Olofsson, H., Omar, A., Orrú, E., Overeem, R., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pizzo, R., Polatidis, A., Rafferty, D., Rawlings, S., Reich, W., de Reijer, J.P., Reitsma, J., Renting, G.A., Riemers, P., Rol, E., Romein, J.W., Roosjen, J., Ruiter, M., Scaife, A., van der Schaaf, K., Scheers, B., Schellart, P., Schoenmakers, A., Schoonderbeek, G., Serylak, M., Shulevski, A., Sluman, J., Smirnov, O., Sobey, C., Spreeuw, H., Steinmetz, M., Sterks, C.G.M., Stiepel, H.J., Stuurwold, K., Tagger, M., Tang, Y., Tasse, C., Thomas, I., Thoudam, S., Toribio, M.C., van der Tol, B., Usov, O., van Veelen, M., van der Veen, A.J., ter Veen, S., Verbiest, J.P.W., Vermeulen, R., Vermaas, N., Vocks, C., Vogt, C., de Vos, M., van der Wal, E., van Weeren, R., Weggemans, H., Weltevrede, P. White, S., Wijnholds, S.J., Wilhelmsson, T., Wucknitz, O., Yatawatta, S., Zarka, P., Zensus, A., van Zwieten, J.: LOFAR: The LOw-Frequency ARray. A & A 556, A2 (2013). https://doi.org/10.1051/0004-6361/201220873. arXiv:1305.3550. [astro-ph.IM]

  31. Johnston, S., Bailes, M., Bartel, N., Baugh, C., Bietenholz, M., Blake, C., Braun, R., Brown, J., Chatterjee, S., Darling, J. Deller, A., Dodson, R., Edwards, P.G., Ekers, R., Ellingsen, S., Feain, I., Gaensler, B.M., Haverkorn, M., Hobbs, G., Hopkins, A., Jackson, C., James, C., Joncas, G., Kaspi, V., Kilborn, V., Koribalski, B., Kothes, R., Landecker, T.L., Lenc, E., Lovell, J., Macquart, J.P., Manchester, R., Matthews, D., McClure-Griffiths, N.M., Norris, R., Pen, U.L., Phillips, C., Power, C., Protheroe, R., Sadler, E., Schmidt, B., Stairs, I., Staveley-Smith, L., Stil, J., Taylor, R., Tingay, S., Tzioumis, A., Walker, M., Wall, J., Wolleben, M.: Science with the Australian Square Kilometre Array Pathfinder. PASA 24(4), 174–188 (2007). https://doi.org/10.1071/AS07033. arXiv:0711.2103. [astro-ph]

  32. Aartsen, M.G. Ackermann, M., Adams, J., Aguilar, J.A., Ahlers, M., Ahrens, M., Altmann, D., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Archinger, M., Argüelles, C., Auer, R., Auffenberg, J., Axani, S., Baccus, J., Bai, X., Barnet, S., Barwick, S.W., Baum, V., Bay, R., Beattie, K., Beatty, J.J., Becker Tjus, J., Becker, K.H., Bendfelt, T., BenZvi, S., Berley, D., Bernardini, E., Bernhard, A., Besson, D.Z., Binder, G., Bindig, D., Bissok, M., Blaufuss, E., Blot, S., Boersma, D., Bohm, C., Börner, M., Bos, F., Bose, D., Böser, S., Botner, O., Bouchta, A., Braun, J., Brayeur, L., Bretz, H.P., Bron, S., Burgman, A., Burreson, C., Carver, T., Casier, M., Cheung, E., Chirkin, D., Christov, A., Clark, K., Classen, L., Coenders, S., Collin, G.H., Conrad, J.M., Cowen, D.F., Cross, R., Day, C., Day, M., de André, J.P.A.M., De Clercq, C., del Pino Rosendo, E., Dembinski, H., De Ridder, S., Descamps, F., Desiati, P., de Vries, K.D., de Wasseige, G., de With, M., DeYoung, T., Díaz-Vélez, J.C., di Lorenzo, V., Dujmovic, H., Dumm, J.P., Dunkman, M., Eberhardt, B., Edwards, W.R., Ehrhardt, T., Eichmann, B., Eller, P., Euler, S., Evenson, P.A., Fahey, S., Fazely, A.R., Feintzeig, J., Felde, J., Filimonov, K., Finley, C., Flis, S., Fösig, C.C., Franckowiak, A., Frère, M., Friedman, E., Fuchs, T., Gaisser, T.K., Gallagher, J., Gerhardt, L., Ghorbani, K., Giang, W., Gladstone, L., Glauch, T., Glowacki, D., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J.G., Grant, D., Griffith, Z., Gustafsson, L., Haack, C., Hallgren, A., Halzen, F., Hansen, E., Hansmann, T., Hanson, K., Haugen, J., Hebecker, D., Heereman, D., Helbing, K., Hellauer, R., Heller, R., Hickford, S., Hignight, J., Hill, G.C., Hoffman, K.D., Hoffmann, R., Hoshina, K., Huang, F., Huber, M., Hulth, P.O. , Hultqvist, K., In, S., Inaba, M., Ishihara, A., Jacobi, E., Jacobsen, J., Japaridze, G.S., Jeong, M., Jero, K., Jones, A., Jones, B.J.P., Joseph, J., Kang, W., Kappes, A., Karg, T., Karle, A., Katz, U., Kauer, M., Keivani, A., Kelley, J.L., Kemp, J., Kheirandish, A., Kim, J., Kim, M., Kintscher, T., Kiryluk, J., Kitamura, N., Kittler, T., Klein, S.R., Kleinfelder, S., Kleist, M., Kohnen, G., Koirala, R., Kolanoski, H., Konietz, R., Köpke, L., Kopper, C., Kopper, S., Koskinen, D.J., Kowalski, M., Krasberg, M., Krings, K., Kroll, M., Krückl, G., Krüger, C., Kunnen, J., Kunwar, S., Kurahashi, N., Kuwabara, T., Labare, M., Laihem, K., Landsman, H., Lanfranchi, J.L., Larson, M.J., Lauber, F., Laundrie, A., Lennarz, D., Leich, H., Lesiak-Bzdak, M., Leuermann, M., Lu, L., Ludwig, J., Lünemann, J., Mackenzie, C., Madsen, J., Maggi, G., Mahn, K.B.M., Mancina, S., Mandelartz, M., Maruyama, R., Mase, K., Matis, H., Maunu, R., McNally, F., McParland, C.P., Meade, P., Meagher, K., Medici, M., Meier, M., Meli, A., Menne, T., Merino, G., Meures, T., Miarecki, S., Minor, R.H., Montaruli, T., Moulai, M., Murray, T., Nahnhauer, R., Naumann, U., Neer, G., Newcomb, M., Niederhausen, H., Nowicki, S.C., Nygren, D.R., Obertacke Pollmann, A., Olivas, A., O’Murchadha, A., Palczewski, T., Pandya, H., Pankova, D.V., Patton, S., Peiffer, P., Penek, Ö., Pepper, J.A., Pérez de los Heros, C., Pettersen, C., Pieloth, D., Pinat, E., Price, P.B., Przybylski, G.T., Quinnan, M., Raab, C., Rädel, L., Rameez, M., Rawlins, K., Reimann, R., Relethford, B., Relich, M., Resconi, E., Rhode, W., Richman, M., Riedel, B., Robertson, S., Rongen, M., Roucelle, C., Rott, C., Ruhe, T., Ryckbosch, D., Rysewyk, D., Sabbatini, L., Sanchez Herrera, S.E., Sandrock, A., Sandroos, J., Sandstrom, P., Sarkar, S., Satalecka, K., Schlunder, P., Schmidt, T., Schoenen, S., Schöneberg, S., Schukraft, A., Schumacher, L., Seckel, D., Seunarine, S., Solarz, M., Soldin, D., Song, M., Spiczak, G.M., Spiering, C., Stanev, T., Stasik, A., Stettner, J., Steuer, A., Stezelberger, T., Stokstad, R.G., Stößl, A., Ström, R., Strotjohann, N.L., Sulanke, K.H., Sullivan, G.W., Sutherland, M., Taavola, H., Taboada, I., Tatar, J., Tenholt, F., Ter-Antonyan, S., Terliuk, A., Tešić, G., Thollander, L., Tilav, S., Toale, P.A., Tobin, M.N., Toscano, S., Tosi, D., Tselengidou, M., Turcati, A., Unger, E., Usner, M., Vandenbroucke, J., van Eijndhoven, N., Vanheule, S., van Rossem, M., van Santen, J., Vehring, M., Voge, M., Vogel, E., Vraeghe, M., Wahl, D., Walck, C., Wallace, A., Wallraff, M., Wandkowsky, N., Weaver, C., Weiss, M.J., Wendt, C., Westerhoff, S., Wharton, D., Whelan, B.J., Wickmann, S., Wiebe, K., Wiebusch, C.H., Wille, L., Williams, D.R., Wills, L., Wisniewski, P., Wolf, M., Wood, T.R., Woolsey, E., Woschn, K.: The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12(3), P03,012 (2017). https://doi.org/10.1088/1748-0221/12/03/P03012. arXiv:1612.05093. [astro-ph.IM]

  33. Bhalerao, V., Vadawale, S., Tendulkar, S., Bhattacharya, D., Rana, V., Adalja, H.K.L., Belatikar, H., Bhaganagare, M., Dewangan, G., Ghodgaonkar, A., Goyal, S.K., Gunasekaran, S., P J, G., Koyande, J.G., Kulkarni, S., Kutty, A.P.K. Ladiya, T., Mahapatra, S., Marla, D., Mate, S., Mithun, N.P.S., Mote, R., Narang, S., Nema, A., Nimbalkar, S., Pai, A., Palit, S., Pate, A., Patel, J., Pradeep, P., Ramachandran, P., Saiguhan, B.S.B., Saraogi, D., Sawant, D., Shanmugam, M., Sharma, P., Shetye, A., Singh, N., Singh, S., Singhal, A., Sreekumar, S., Sridhar, S., Srinivasan, R., Tallur, S., Tiwari, N.K., Vadladi, A.L., Vaishnava, C.S., Vishwakarma, S., Waratkar, G.: Daksha: on alert for high energy transients. Exp. Astron. (2024)

  34. Luo, Q., Liao, J.Y., Li, X.F., Li, G., Zhang, J., Liu, C.Z., Li, X.B., Zhu, Y., Li, C.K., Huang, Y., Ge, M.Y., Xu, Y.P., Li, Z.W., Cai, C., Xiao, S., Yi, Q.B., Zhang, Y.F., Xiong, S.L., Zhang, S., Zhang, S.N.: Calibration of the instrumental response of Insight-HXMT/HE CsI detectors for gamma-ray monitoring. J. High Energy Astrophys. 27, 1–13 (2020). https://doi.org/10.1016/j.jheap.2020.04.004. arXiv:2005.01367. [astro-ph.IM]

  35. Sakamoto, T., Barthelmy, S.D., Baumgartner, W.H., Cummings, J.R., Fenimore, E.E., Gehrels, N., Krimm, H.A., Markwardt, C.B., Palmer, D.M., Parsons, A.M., Sato, G., Stamatikos, M., Tueller, J., Ukwatta, T.N., Zhang, B.: The Second Swift Burst Alert Telescope Gamma-Ray Burst Catalog. ApJS 195(1), 2 (2011). https://doi.org/10.1088/0067-0049/195/1/2. arXiv:1104.4689. [astro-ph.HE]

  36. ...Kilpatrick, C.D., Foley, R.J., Kasen, D., Murguia-Berthier, A., Ramirez-Ruiz, E., Coulter, D.A., Drout, M.R., Piro, A.L., Shappee, B.J., Boutsia, K., Contreras, C., Mille, F.D., Madore, B.F., Morrell, N., Pan, Y.C., Prochaska, J.X., Rest, A., Rojas-Bravo, C., Siebert, M.R., Simon, J.D., Ulloa, N.: Electromagnetic evidence that sss17a is the result of a binary neutron star merger. Science 358, 1583–1587 (2017). https://doi.org/10.1126/science.aaq0073, . https://www.sciencemag.org/lookup/doi/10.1126/science.aaq0073

  37. Mooley, K.P., Frail, D.A., Dobie, D., Lenc, E., Corsi, A., De, K., Nayana, A.J., Makhathini, S., Heywood, I., Murphy, T., Kaplan, D.L., Chandra, P., Smirnov, O., Nakar, E., Hallinan, G., Camilo, F., Fender, R., Goedhart, S., Groot, P., Kasliwal, M.M., Kulkarni, S.R., Woudt, P.A.: A strong jet signature in the late-time light curve of gw170817. The Astrophysical Journal 868, L11 (2018). https://doi.org/10.3847/2041-8213/aaeda7

    Article  ADS  Google Scholar 

  38. Mooley, K.P., Deller, A.T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., Frail, D.A., Horesh, A., Corsi, A., Hotokezaka, K.: Superluminal motion of a relativistic jet in the neutron-star merger gw170817. Nature 561, 355–359 (2018). https://doi.org/10.1038/s41586-018-0486-3

    Article  ADS  Google Scholar 

  39. Troja, E., van Eerten, H., Ryan, G., Ricci, R., Burgess, J.M., Wieringa, M., Piro, L., Cenko, S.B., Sakamoto, T.: A year in the life of gw170817: the rise and fall of a structured jet from a binary neutron star merger. Monthly Notices of the Royal Astronomical Society p. 2169 (2018). https://doi.org/10.1093/mnras/stz2248

  40. Goldstein, A., Veres, P., Burns, E., Briggs, M.S., Hamburg, R., Kocevski, D., Wilson-Hodge, C.A., Preece, R.D., Poolakkil, S., Roberts, O.J., Hui, C.M., Connaughton, V., Racusin, J., von Kienlin, A., Canton, T.D., Christensen, N., Littenberg, T., Siellez, K., Blackburn, L., Broida, J., Bissaldi, E., Cleveland, W.H., Gibby, M.H., Giles, M.M., Kippen, R.M., McBreen, S., McEnery, J., Meegan, C.A., Paciesas, W.S., Stanbro, M.: An ordinary short gamma-ray burst with extraordinary implications: Fermi -gbm detection of grb 170817a. The Astrophysical Journal 848, L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41

    Article  ADS  Google Scholar 

  41. Kasen, D., Metzger, B., Barnes, J., Quataert, E., Ramirez-Ruiz, E.: Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event. Nature 551, 80–84 (2017). https://doi.org/10.1038/nature24453, https://arxiv.org/abs/1710.05463

  42. Kasliwal, M.M., Nakar, E., Singer, L.P., Kaplan, D.L., Cook, D.O., Sistine, A.V., Lau, R.M., Fremling, C., Gottlieb, O., Jencson, J.E., Adams, S.M., Feindt, U., Hotokezaka, K., Ghosh, S., Perley, D.A., Yu, P.C., Piran, T., Allison, J.R., Anupama, G.C., Balasubramanian, A., Bannister, K.W., Bally, J., Barnes, J., Barway, S., Bellm, E., Bhalerao, V., Bhattacharya, D., Blagorodnova, N., Bloom, J.S., Brady, P.R., Cannella, C., Chatterjee, D., Cenko, S.B., Cobb, B.E., Copperwheat, C., Corsi, A., De, K., Dobie, D., Emery, S.W.K., Evans, P.A., Fox, O.D., Frail, D.A., Frohmaier, C., Goobar, A., Hallinan, G., Harrison, F., Helou, G., Hinderer, T., Ho, A.Y.Q., Horesh, A., Ip, W.H., Itoh, R., Kasen, D., Kim, H., Kuin, N.P.M., Kupfer, T., Lynch, C., Madsen, K., Mazzali, P.A., Miller, A.A., Mooley, K., Murphy, T., Ngeow, C.C., Nichols, D., Nissanke, S., Nugent, P., Ofek, E.O., Qi, H., Quimby, R.M., Rosswog, S., Rusu, F., Sadler, E.M., Schmidt, P., Sollerman, J., Steele, I., Williamson, A.R., Xu, Y., Yan, L., Yatsu, Y., Zhang, C., Zhao, W.: Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017). https://doi.org/10.1126/science.aap9455

    Article  ADS  Google Scholar 

  43. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., Affeldt, C., Afrough, M., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Podesta, R., Levato, H., Saffe, C., Buckley, D.A.H., Budnev, N.M., Gress, O., Yurkov, V., Rebolo, R., Serra-Ricart, M.: A gravitational-wave standard siren measurement of the hubble constant. Nature 551, 85–88 (2017). https://doi.org/10.1038/nature24471

    Article  ADS  Google Scholar 

  44. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., Affeldt, C., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allen, G., Allocca, A., Aloy, M.A., Altin, P.A., Amato, A., Ananyeva, A., Anderson, S.B., Anderson, W.G., Angelova, S.V., Antier, S., Appert, S., Arai, K., Araya, M.C., Areeda, J.S., Aréne, M., Arnaud, N., Arun, K.G., Zweizig, J. et al.: GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett 121(16), 161101 (2018). https://doi.org/10.1103/PhysRevLett.121.161101. arXiv:1805.11581. [gr-qc]

  45. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., Affeldt, C., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allen, G., Allocca, A., Aloy, M.A., Altin, P.A., Amato, A., Ananyeva, A., Anderson, S.B., Zweizig, J. et al.: Properties of the binary neutron star merger GW170817. Phys. Rev. X. 9, 011,001 (2019). https://doi.org/10.1103/PhysRevX.9.011001. URL https://ui.adsabs.harvard.edu/abs/2019PhRvX...9a1001A/abstract

  46. K.P. Mooley, E. Nakar, K. Hotokezaka, G. Hallinan, A. Corsi, D.A. Frail, A. Horesh, T. Murphy, E. Lenc, D.L. Kaplan, K. de, D. Dobie, P.C. ra, A. Deller, O. Gottlieb, M.M. Kasliwal, S.R. Kulkarni, S.T. Myers, S. Nissanke, T. Piran, C. Lynch, V. Bhalerao, S. Bourke, K.W. Bannister, L.P. Singer, A mildly relativistic wide-angle outflow in the neutron-star merger event gw170817. Nature 554, 207–210 (2018). https://doi.org/10.1038/nature25452

  47. Beniamini, P., Nakar, E.: Observational constraints on the structure of gamma-ray burst jets. MNRAS 482(4), 5430–5440 (2019). https://doi.org/10.1093/mnras/sty3110. arXiv:1808.07493. [astro-ph.HE]

  48. Saleem, M., Resmi, L., Arun, K.G., Mohan, S.: On the Energetics of a Possible Relativistic Jet Associated with the Binary Neutron Star Merger Candidate S190425z. ApJ 891(2), 130 (2020). https://doi.org/10.3847/1538-4357/ab6731. arXiv:1905.00337. [astro-ph.HE]

  49. Hosseinzadeh, G., Cowperthwaite, P.S., Gomez, S., Villar, V.A., Nicholl, M., Margutti, R., Berger, E., Chornock, R., Paterson, K., Fong, W., Savchenko, V., Short, P., Alexander, K.D., Blanchard, P.K., Braga, J., Calkins, M.L., Cartier, R., Coppejans, D.L., Eftekhari, T., Laskar, T., Ly, C., Patton, L., Pelisoli, I., Reichart, D.E., Terreran, G., Williams, P.K.G.: Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. ApJ 880(1), L4 (2019). https://doi.org/10.3847/2041-8213/ab271c. arXiv:1905.02186. [astro-ph.HE]

  50. Coughlin, M.W., Dietrich, T., Antier, S., Almualla, M., Anand, S., Bulla, M., Foucart, F., Guessoum, N., Hotokezaka, K., Kumar, V., Raaijmakers, G., Nissanke, S.: Implications of the search for optical counterparts during the second part of the Advanced LIGO’s and Advanced Virgo’s third observing run: lessons learned for future follow-up observations. MNRAS 497(1), 1181–1196 (2020). https://doi.org/10.1093/mnras/staa1925. arXiv:2006.14756. [astro-ph.HE]

  51. Evans, P.A., Cenko, S.B., Kennea, J.A., Emery, S.W.K., Kuin, N.P.M., Korobkin, O., Wollaeger, R.T., Fryer, C.L., Madsen, K.K., Harrison, F.A., Xu, Y., Nakar, E., Hotokezaka, K., Lien, A., Campana, S., Oates, S.R., Troja, E., Breeveld, A.A., Marshall, F.E., Barthelmy, S.D., Beardmore, A.P., Burrows, D.N., Cusumano, G., D’Aì, A., D’Avanzo, P., D’Elia, V., de Pasquale, M., Even, W.P., Fontes, C.J., Forster, K., Garcia, J., Giommi, P., Grefenstette, B., Gronwall, C., Hartmann, D.H., Heida, M., Hungerford, A.L., Kasliwal, M.M., Krimm, H.A., Levan, A.J., Malesani, D., Melandri, A., Miyasaka, H., Nousek, J.A., O’Brien, P.T., Osborne, J.P., Pagani, C., Page, K.L., Palmer, D.M., Perri, M., Pike, S., Racusin, J.L., Rosswog, S., Siegel, M.H., Sakamoto, T., Sbarufatti, B., Tagliaferri, G., Tanvir, N.R., Tohuvavohu, A.: Swift and NuSTAR observations of GW170817: Detection of a blue kilonova. Science 358(6370), 1565–1570 (2017). https://doi.org/10.1126/science.aap9580. arXiv:1710.05437. [astro-ph.HE]

  52. Bégué, D., Burgess, J.M., Greiner, J.: The Peculiar Physics of GRB 170817A and Their Implications for Short GRBs. ApJ 851(1), L19 (2017). https://doi.org/10.3847/2041-8213/aa9d85. arXiv:1710.07987. [astro-ph.HE]

  53. Hotokezaka, K., Beniamini, P., Piran, T.: Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D (2018). https://doi.org/10.1142/S0218271818420051

    Article  MathSciNet  Google Scholar 

  54. Beniamini, P., Petropoulou, M., Barniol Duran, R., Giannios, D.: A lesson from GW170817: most neutron star mergers result in tightly collimated successful GRB jets. MNRAS 483(1), 840–851 (2019). https://doi.org/10.1093/mnras/sty3093. arXiv:1808.04831. [astro-ph.HE]

  55. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., et al.: Prospects for observing and localizing gravitational-wave transients with advanced ligo, advanced virgo and kagra. Living Reviews in Relativity 21(1) (2018). https://doi.org/10.1007/s41114-018-0012-9

  56. Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., Yamamoto, H.: Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. 88(4), 043007 (2013). https://doi.org/10.1103/PhysRevD.88.043007. arXiv:1306.6747. [gr-qc]

  57. Mills, C., Tiwari, V., Fairhurst, S.: Localization of binary neutron star mergers with second and third generation gravitational-wave detectors. Phys. Rev. D. 97(10) (2018). https://doi.org/10.1103/physrevd.97.104064

  58. Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adya, V.B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Allen, G., Allocca, A., Aloy, M.A., Altin, P.A., Amato, A., Ananyeva, A., Anderson, S.B., Anderson, W.G., Ando, M., Angelova, S.V., Antier, S., Appert, S., Arai, K., Arai, K., Arai, Y., Araki, S., Araya, A., Araya, M.C., Areeda, J.S., Arène, M., Aritomi, N., Arnaud, N., Arun, K.G., Ascenzi, S., Ashton, G., Aso, Y., Aston, S.M., Astone, P., Aubin, F., Aufmuth, P., Worden, J., Wright, J.L., Wu, C.M., Wu, D.S., Wu, H.C., Wu, S.R., Wysocki, D.M., Xiao, L., Xu, W.R., Yamada, T., Yamamoto, H., Yamamoto, K., Yamamoto, K., Yamamoto, T., Yancey, C.C., Yang, L., Yap, M.J., Yazback, M., Yeeles, D.W., Yokogawa, K., Yokoyama, J., Yokozawa, T., Yoshioka, T., Yu, H., Yu, H., Yuen, S.H.R., Yuzurihara, H., Yvert, M. Zadrożny, A.K., Zanolin, M., Zeidler, S., Zelenova, T., Zendri, J.P., Zevin, M., Zhang, J., Zhang, L., Zhang, T., Zhao, C., Zhao, Y., Zhou, M., Zhou, Z., Zhu, X.J., Zhu, Z.H., Zimmerman, A.B., Zucker, M.E., Zweizig, J., Kagra Collaboration, L.S.C., VIRGO Collaboration et al.: Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 23(1), 3 (2020). https://doi.org/10.1007/s41114-020-00026-9

  59. Burns, E., Zhu, S., Hui, C.M., Ansoldi, S., Barthelmy, S., Boggs, S., Cenko, S.B., Christensen, N., Fryer, C., Goldstein, A., Harding, A., Hartmann, D., Joens, A., Kanbach, G., Kerr, M., Kierans, C., McEnery, J., Patricelli, B., Perkins, J., Racusin, J., Ray, P., Schlieder, J., Schoorlemmer, H., Schussler, F., Stamerra, A., Tomsick, J., Wadiasingh, Z., Wilson-Hodge, C., Younes, G., Zhang, B., Zoglauer, A.: Gamma Rays and Gravitational Waves. BAAS 51(3), 260 (2019). arXiv:1903.04472. [astro-ph.HE]

  60. Petrov, P., Singer, L.P., Coughlin, M.W., Kumar, V., Almualla, M., Anand, S., Bulla, M., Dietrich, T., Foucart, F., Guessoum, N.: Data-driven Expectations for Electromagnetic Counterpart Searches Based on LIGO/Virgo Public Alerts. ApJ 924(2), 54 (2022). https://doi.org/10.3847/1538-4357/ac366d. arXiv:2108.07277. [astro-ph.HE]

  61. National Academies of Sciences Engineering and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s (The National Academies Press, Washington, DC, 2021). https://doi.org/10.17226/26141. https://nap.nationalacademies.org/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s

  62. Bhattacharjee, S., Banerjee, S., Bhalerao, V., Beniamini, P., Bose, S., Hotokezaka, K., Pai, A., Saleem, M., Waratkar, G.: Joint gravitational wave-short GRB detection of binary neutron star mergers with existing and future facilities. Mon. Not. R. Astron. Soc. 528(3), 4255–4263 (2024). https://doi.org/10.1093/mnras/stae284. https://ui.adsabs.harvard.edu/abs/2024MNRAS.528.4255B

  63. Gottlieb, O., Nakar, E., Piran, T., Hotokezaka, K.: A cocoon shock breakout as the origin of the \(\gamma \)-ray emission in GW170817. MNRAS 479(1), 588–600 (2018). https://doi.org/10.1093/mnras/sty1462. arXiv:1710.05896. [astro-ph.HE]

  64. Beloborodov, A.M., Lundman, C., Levin, Y.: Relativistic Envelopes and Gamma-Rays from Neutron Star Mergers. ApJ 897(2), 141 (2020). https://doi.org/10.3847/1538-4357/ab86a0. arXiv:1812.11247. [astro-ph.HE]

  65. Nakar, E., Sari, R.: Relativistic Shock Breakouts—A Variety of Gamma-Ray Flares: From Low-luminosity Gamma-Ray Bursts to Type Ia Supernovae. ApJ 747(2), 88 (2012). https://doi.org/10.1088/0004-637X/747/2/88. arXiv:1106.2556. [astro-ph.HE]

  66. Hotokezaka, K., Kiuchi, K., Shibata, M., Nakar, E., Piran, T.: Synchrotron Radiation from the Fast Tail of Dynamical Ejecta of Neutron Star Mergers. ApJ 867(2), 95 (2018). https://doi.org/10.3847/1538-4357/aadf92. arXiv:1803.00599. [astro-ph.HE]

  67. Radice, D., Perego, A., Hotokezaka, K., Fromm, S.A., Bernuzzi, S., Roberts, L.F.: Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis. ApJ 869(2), 130 (2018). https://doi.org/10.3847/1538-4357/aaf054. arXiv:1809.11161. [astro-ph.HE]

  68. Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R.X., Adya, V.B., Affeldt, C., Agathos, M., Zhao, C., Zhao, G., Zhou, M., Zhou, Z., Zhu, X.J., Zimmerman, A.B., Zucker, M.E., Zweizig, J., LIGO Scientific Collaboration, Virgo Collaboration: Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913(1), L7 (2021). https://doi.org/10.3847/2041-8213/abe949. arXiv:2010.14533. [astro-ph.HE]

  69. Ioka, K., Nakamura, T.: Spectral puzzle of the off-axis gamma-ray burst in GW170817. MNRAS 487(4), 4884–4889 (2019). https://doi.org/10.1093/mnras/stz1650. arXiv:1903.01484. [astro-ph.HE]

  70. Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., Paciesas, W.S., Pendleton, G.N.: Identification of Two Classes of Gamma-Ray Bursts. ApJ 413, L101 (1993). https://doi.org/10.1086/186969

    Article  ADS  Google Scholar 

  71. Wanderman, D., Piran, T.: The rate, luminosity function and time delay of non-collapsar short grbs. Monthly Notices of the Royal Astronomical Society 448(4), 3026–3037 (2015). https://doi.org/10.1093/mnras/stv123, https://academic.oup.com/mnras/article-pdf/448/4/3026/2810182/stv123.pdf

  72. Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R.X., Adya, V.B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aich, A., Aiello, L., Ain, A., Ajith, P., Allen, G., Allocca, A., Altin, P.A., Amato, A., Anand, S., Ananyeva, A., Anderson, S.B., Anderson, W.G., Angelova, S.V., Ansoldi, S., Antier, S., Appert, S., Arai, K., Araya, M.C., Areeda, J.S., Arène, M., Arnaud, N., Aronson, S.M., Asali, Y., Ascenzi, S., Ashton, G., Assiduo, M., Aston, S.M., Astone, P., Aubin, F., Aufmuth, P., AultONeal, K., Austin, C., Avendano, V., Babak, S., Bacon, P., Badaracco, F., Bader, M.K.M., Bae, S., Baer, A.M., Baird, J., Baldaccini, F., Ballardin, G., Ballmer, S.W., Bals, A., Balsamo, A., Zucker, M.E., Zweizig, J., LIGO Scientific Collaboration, Virgo Collaboration et al.: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a. ApJ 915(2), 86 (2021). https://doi.org/10.3847/1538-4357/abee15. arXiv:2010.14550. [astro-ph.HE]

  73. Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adhikari, N., Adhikari, R.X., Adya, V.B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Allocca, A., Altin, P.A., Amato, A., Anand, C., Anand, S., Ananyeva, A., Anderson, S.B., Anderson, W.G., Ando, M., Andrade, T., Andres, N., Andrić, T., Angelova, S.V., Ansoldi, S., Antelis, J.M., Antier, S., Appert, S., Arai, K., Arai, K., Arai, Y., Araki, S., Araya, A., Araya, M.C., Areeda, J.S., Arène, M., Aritomi, N., Arnaud, N., Aronson, S.M., Arun, K.G., Asada, H., Asali, Y., Ashton, G., Aso, Y., Assiduo, M., Aston, S.M., Astone, P., Aubin, F., Austin, C., Babak, S., Badaracco, F., Bader, M.K.M., Badger, C., Bae, S., Bae, Y., Baer, A.M., Bagnasco, S., Bai, Y., Zimmerman, A.B., Zucker, M.E., Zweizig, J., Ligo Scientific Collaboration, VIRGO Collaboration, Kagra Collaboration et al.: Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b. ApJ 928(2), 186 (2022). https://doi.org/10.3847/1538-4357/ac532b. arXiv:2111.03608. [astro-ph.HE]

  74. Bloom, J.S., Kulkarni, S.R., Djorgovski, S.G.: The observed offset distribution of gamma-ray bursts from their host galaxies: A robust clue to the nature of the progenitors. AJ 123(3), 1111–1148 (2002). https://doi.org/10.1086/338893. arXiv:astro-ph/0010176. [astro-ph]

  75. Hjorth, J., Sollerman, J., Møller, P., Fynbo, J.P.U., Woosley, S.E., Kouveliotou, C., Tanvir, N.R., Greiner, J., Andersen, M.I., Castro-Tirado, A.J., Castro Cerón, J.M., Fruchter, A.S., Gorosabel, J., Jakobsson, P., Kaper, L., Klose, S., Masetti, N., Pedersen, H., Pedersen, K., Pian, E., Palazzi, E., Rhoads, J.E., Rol, E., van den Heuvel, E.P.J., Vreeswijk, P.M., Watson, D., Wijers, R.A.M.J.: A very energetic supernova associated with the \(\gamma \)-ray burst of 29 March 2003. Nature 423(6942), 847–850 (2003). https://doi.org/10.1038/nature01750. arXiv:astro-ph/0306347. [astro-ph]

  76. Hjorth, J., Bloom, J.S.: In: Chapter 9 in Gamma-Ray Bursts (Cambridge University Press, 2012), pp. 169–190

  77. Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161,101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

  78. Greiner, J., Clemens, C., Krühler, T., von Kienlin, A., Rau, A., Sari, R., Fox, D.B., Kawai, N., Afonso, P., Ajello, M., Berger, E., Cenko, S.B., Cucchiara, A., Filgas, R., Klose, S., Küpcü Yoldas, A., Lichti, G.G., Löw, S., McBreen, S., Nagayama, T., Rossi, A., Sato, S., Szokoly, G., Yoldas, A., Zhang, X.-L.: The redshift and afterglow of the extremely energetic gamma-ray burst grb 080916c. A &A 498(1), 89–94 (2009). https://doi.org/10.1051/0004-6361/200811571

    Article  ADS  Google Scholar 

  79. Gendre, B., Boër, M.: Decay properties of the x-ray afterglows of gamma-ray bursts. A &A 430(2), 465–470 (2005). https://doi.org/10.1051/0004-6361:20042031

    Article  ADS  Google Scholar 

  80. Schady, P.: Gamma-ray burst afterglows as probes of the ism. Journal of High Energy Astrophysics 7, 56–63 (2015). https://doi.org/10.1016/j.jheap.2015.05.001. https://www.sciencedirect.com/science/article/pii/S2214404815000191. Swift 10 Years of Discovery, a novel approach to Time Domain Astronomy

  81. Zhang, B.: Open questions in grb physics. Comptes Rendus Physique 12(3), 206–225 (2011). https://doi.org/10.1016/j.crhy.2011.03.004

    Article  ADS  Google Scholar 

  82. Gehrels, N., Mészáros, P.: Gamma-ray bursts. Science 337(6097), 932–936 (2012). https://doi.org/10.1126/science.1216793

    Article  ADS  Google Scholar 

  83. Oganesyan, G., Nava, L., Ghirlanda, G., Celotti, A.: Characterization of gamma-ray burst prompt emission spectra down to soft x-rays. A &A 616, A138 (2018). https://doi.org/10.1051/0004-6361/201732172

    Article  Google Scholar 

  84. Wanderman, D., Piran, T.: The luminosity function and the rate of Swift’s gamma-ray bursts. MNRAS 406(3), 1944–1958 (2010). https://doi.org/10.1111/j.1365-2966.2010.16787.x. arXiv:0912.0709. [astro-ph.HE]

  85. Wanderman, D., Piran, T.: The rate, luminosity function and time delay of non-collapsar short GRBs. Monthly Notices of the Royal Astronomical Society 448(4), 3026–3037 (2015). https://doi.org/10.1093/mnras/stv123

    Article  ADS  Google Scholar 

  86. Amati, L., Frontera, F., Tavani, M., in’t Zand, J.J.M., Antonelli, A., Costa, E., Feroci, M., Guidorzi, C., Heise, J., Masetti, N., Montanari, E., Nicastro, L., Palazzi, E., Pian, E., Piro, L., Soffitta, P.: Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. A &A 390, 81–89 (2002). https://doi.org/10.1051/0004-6361:20020722. arXiv:astro-ph/0205230. [astro-ph]

  87. Amati, L.: The E\(_{p,i}\)-E\(_{iso}\) correlation in gamma-ray bursts: updated observational status, re-analysis and main implications. MNRAS 372(1), 233–245 (2006). https://doi.org/10.1111/j.1365-2966.2006.10840.x. arXiv:astro-ph/0601553. [astro-ph]

  88. Liang, E.W., Yi, S.X., Zhang, J., Lü, H.J., Zhang, B.B., Zhang, B.: Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight \(\Gamma \)\(_{0}\)-E \(_{{\gamma },iso}\) Correlation. ApJ 725(2), 2209–2224 (2010). https://doi.org/10.1088/0004-637X/725/2/2209. arXiv:0912.4800. [astro-ph.HE]

  89. Ghirlanda, G., Nava, L., Ghisellini, G., Celotti, A., Burlon, D., Covino, S., Melandri, A.: Gamma-ray bursts in the comoving frame. MNRAS 420(1), 483–494 (2012). https://doi.org/10.1111/j.1365-2966.2011.20053.x. arXiv:1107.4096. [astro-ph.HE]

  90. Derishev, E.V., et al.: Physical parameters and emission mechanism in gamma-ray bursts. A &A 372 (2001)

  91. Daigne, F.: et al., Reconciling observed gamma-ray burst prompt spectra with synchrotron radiation? A &A 526 (2011)

  92. Beniamini, P., Piran, T.: Constraints on the Synchrotron Emission Mechanism in Gamma-Ray Bursts. ApJ 769(1), 69 (2013). https://doi.org/10.1088/0004-637X/769/1/69. arXiv:1301.5575. [astro-ph.HE]

  93. Nakar, E., Ando, S., Sari, R.: Klein-Nishina Effects on Optically Thin Synchrotron and Synchrotron Self-Compton Spectrum. ApJ 703(1), 675–691 (2009). https://doi.org/10.1088/0004-637X/703/1/675. arXiv:0903.2557. [astro-ph.HE]

  94. Uhm, Z.L., Zhang, B.: Fast-cooling synchrotron radiation in a decaying magnetic field and \(\gamma \)-ray burst emission mechanism. Nature Physics 10(5), 351–356 (2014). https://doi.org/10.1038/nphys2932. arXiv:1303.2704. [astro-ph.HE]

  95. Medvedev, M.V.: The Theory of Spectral Evolution of the Gamma-Ray Burst Prompt Emission. ApJ 637(2), 869–872 (2006). https://doi.org/10.1086/498697. arXiv:astro-ph/0510472. [astro-ph]

  96. Band, D., Matteson, J., Ford, L., Schaefer, B., Palmer, D., Teegarden, B., Cline, T., Briggs, M., Paciesas, W., Pendleton, G., et al.: Batse observations of gamma-ray burst spectra i-spectral diversity. Astrophys. J. 413, 281–292 (1993)

    Article  ADS  Google Scholar 

  97. Oganesyan, G., Nava, L., Ghirlanda, G., Celotti, A.: Characterization of gamma-ray burst prompt emission spectra down to soft X-rays. A &A 616, A138 (2018). https://doi.org/10.1051/0004-6361/201732172. arXiv:1710.09383. [astro-ph.HE]

  98. Norris, J.P., Gehrels, N., Scargle, J.D.: Threshold for extended emission in short gamma-ray bursts. Astrophys. J. 717(1), 411–419 (2010). https://doi.org/10.1088/0004-637X/717/1/411

    Article  ADS  Google Scholar 

  99. Bostanci, Z.F., Kaneko, Y., Göğüş, E.: Gamma-ray bursts with extended emission observed with batse. Monthly Notices of the Royal Astronomical Society. 428(2), 1623–1630 (2012). https://doi.org/10.1093/mnras/sts157

    Article  ADS  Google Scholar 

  100. Perley, D.A., Metzger, B.D., Granot, J., Butler, N.R., Sakamoto, T., Ramirez-Ruiz, E., Levan, A.J., Bloom, J.S., Miller, A.A., Bunker, A., et al.: Grb 080503: Implications of a naked short gamma-ray burst dominated by extended emission. Astrophys. J. 696(2), 1871–1885 (2009). https://doi.org/10.1088/0004-637X/696/2/1871

    Article  ADS  Google Scholar 

  101. Abbott, B., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R., Adya, V., Affeldt, C., Afrough, M., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O., Aiello, L., Ain, A., Ajith, P., Smirnov, O., Fender, R., Woudt, P.: Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. ApJ 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834. [astro-ph.HE]

  102. Shemi, A., Piran, T.: The Appearance of Cosmic Fireballs. ApJ 365, L55 (1990). https://doi.org/10.1086/185887

    Article  Google Scholar 

  103. Daigne, F., Mochkovitch, R.: Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties. Monthly Notices of the Royal Astronomical Society 296(2), 275–286 (1998). https://doi.org/10.1046/j.1365-8711.1998.01305.x. https://academic.oup.com/mnras/article-pdf/296/2/275/2985446/296-2-275.pdf

  104. Golenetskii, S.V., Mazets, E.P., Aptekar, R.L., Ilinskii, V.N.: Correlation between luminosity and temperature in \(\gamma \)-ray burst sources. Nature. 306(5942), 451–453 (1983). https://doi.org/10.1038/306451a0

    Article  ADS  Google Scholar 

  105. McKinney, J.C., Uzdensky, D.A.: A reconnection switch to trigger gamma-ray burst jet dissipation. Monthly Notices of the Royal Astronomical Society. 419(1), 573–607 (2011). https://doi.org/10.1111/j.1365-2966.2011.19721.x. https://academic.oup.com/mnras/article-pdf/419/1/573/18706384/mnras0419-0573.pdf

  106. Gottlieb, O., Nakar, E., Piran, T., Hotokezaka, K.: A cocoon shock breakout as the origin of the \(\gamma \)-ray emission in GW170817. MNRAS. 479(1), 588–600 (2018). https://doi.org/10.1093/mnras/sty1462. arXiv:1710.05896. [astro-ph.HE]

  107. Beloborodov, A.M., Lundman, C., Levin, Y.: Relativistic Envelopes and Gamma-Rays from Neutron Star Mergers. ApJ 897(2), 141 (2020). https://doi.org/10.3847/1538-4357/ab86a0

    Article  ADS  Google Scholar 

  108. Hotokezaka, K., Kiuchi, K., Shibata, M., Nakar, E., Piran, T.: Synchrotron Radiation from the Fast Tail of Dynamical Ejecta of Neutron Star Mergers. ApJ. 867(2), 95 (2018). https://doi.org/10.3847/1538-4357/aadf92. arXiv:1803.00599. [astro-ph.HE]

  109. Radice, D., Perego, A., Hotokezaka, K., Fromm, S.A., Bernuzzi, S., Roberts, L.F.: Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis. ApJ. 869(2), 130 (2018). https://doi.org/10.3847/1538-4357/aaf054. arXiv:1809.11161. [astro-ph.HE]

  110. Covino, S., Gotz, D.: Polarization of prompt and afterglow emission of Gamma-Ray Bursts. Astron. Astrophys. Trans. 29(2), 205–244 (2016). arXiv:1605.03588. [astro-ph.HE]

  111. Lazzati, D., Rossi, E., Ghisellini, G., Rees, M.J.: Compton drag as a mechanism for very high linear polarization in gamma-ray bursts. MNRAS. 347(1), L1–L5 (2004). https://doi.org/10.1111/j.1365-2966.2004.07387.x. arXiv:astro-ph/0309038. [astro-ph]

  112. Waxman, E.: Astronomy: New direction for \(\gamma \)-rays. Nature 423(6938), 388–389 (2003). https://doi.org/10.1038/423388a. arXiv:astro-ph/0305414. [astro-ph]

  113. Gill, R., Granot, J., Kumar, P.: Linear polarization in gamma-ray burst prompt emission. MNRAS 491(3), 3343–3373 (2020). https://doi.org/10.1093/mnras/stz2976. arXiv:1811.11555. [astro-ph.HE]

  114. Chattopadhyay, T., Gupta, S., Iyyani, S., Saraogi, D., Sharma, V., Tsvetkova, A., Ratheesh, A., Gupta, R., Mithun, N.P.S., Vaishnava, C.S., Prasad, V., Aarthy, E., Kumar, A., Rao, A.R., Vadawale, S., Bhalerao, V., Bhattacharya, D., Vibhute, A., Frederiks, D.: Hard X-Ray Polarization Catalog for a Five-year Sample of Gamma-Ray Bursts Using AstroSat CZT Imager. ApJ. 936(1), 12 (2022). https://doi.org/10.3847/1538-4357/ac82ef. arXiv:2207.09605. [astro-ph.HE]

  115. Beloborodov, A.M.: Radiative Transfer in Ultrarelativistic Outflows. ApJ. 737(2), 68 (2011). https://doi.org/10.1088/0004-637X/737/2/68. arXiv:1011.6005. [astro-ph.HE]

  116. Toma, K., Wu, X.F., Mészáros, P.: An up-scattered cocoon emission model of gamma-ray burst high-energy lags. Astrophys. J. 707(2), 1404–1416 (2009). https://doi.org/10.1088/0004-637x/707/2/1404

    Article  ADS  Google Scholar 

  117. Ghisellini, G., Lazzati, D.: Polarization light curves and position angle variation of beamed gamma-ray bursts. MNRAS. 309(1), L7–L11 (1999). https://doi.org/10.1046/j.1365-8711.1999.03025.x. arXiv:astro-ph/9906471. [astro-ph]

  118. Burgess, J.M., Bégué, D., Greiner, J., Giannios, D., Bacelj, A., Berlato, F.: Gamma-ray bursts as cool synchrotron sources. Nat. Astron. 4, 174–179 (2020). https://doi.org/10.1038/s41550-019-0911-z. arXiv:1810.06965. [astro-ph.HE]

  119. Medvedev, M.V., Loeb, A.: Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources. ApJ 526(2), 697–706 (1999). https://doi.org/10.1086/308038. arXiv:astro-ph/9904363. [astro-ph]

  120. Burgess, J.M., et al.: Time-Resolved GRB Polarization with POLAR and GBM. ArXiv e-prints (2019). arXiv:1810.06965

  121. Troja, E., Lipunov, V.M., Mundell, C.G., Butler, N.R., Watson, A.M., Kobayashi, S., Cenko, S.B., Marshall, F.E., Ricci, R., Fruchter, A., Wieringa, M.H., Gorbovskoy, E.S., Kornilov, V., Kutyrev, A., Lee, W.H., Toy, V., Tyurina, N.V., Budnev, N.M., Buckley, D.A.H., González, J., Gress, O., Horesh, A., Panasyuk, M.I., Prochaska, J.X., Ramirez-Ruiz, E., Rebolo Lopez, R., Richer, M.G., Roman-Zuniga, C., Serra-Ricart, M., Yurkov, V., Gehrels, N.: Significant and variable linear polarization during the prompt optical flash of GRB 160625B. Nature. 547, 425–427 (2017). https://doi.org/10.1038/nature23289

  122. Vianello, G., Gill, R., Granot, J., Omodei, N., Cohen-Tanugi, J., Longo, F.: The Bright and the Slow–GRBs 100724B and 160509A with High-energy Cutoffs at \(\lesssim \)100 MeV. ApJ 864(2), 163 (2018). https://doi.org/10.3847/1538-4357/aad6ea. arXiv:1706.01481. [astro-ph.HE]

  123. Götz, D., Laurent, P., Lebrun, F., Daigne, F., Bošnjak, Ž.: Variable Polarization Measured in the Prompt Emission of GRB 041219A Using IBIS on Board INTEGRAL. ApJ. 695(2), L208–L212 (2009). https://doi.org/10.1088/0004-637X/695/2/L208. arXiv:0903.1712. [astro-ph.HE]

  124. Yonetoku, D., Murakami, T., Gunji, S., Mihara, T., Toma, K., Sakashita, T., Morihara, Y., Takahashi, T., Toukairin, N., Fujimoto, H., Kodama, Y., Kubo, S.: IKAROS Demonstration Team, Detection of Gamma-Ray Polarization in Prompt Emission of GRB 100826A. ApJ. 743(2), L30 (2011). https://doi.org/10.1088/2041-8205/743/2/L30. arXiv:1111.1779. [astro-ph.HE]

  125. Zhang, S.N., Kole, M., Bao, T.W., Batsch, T., Bernasconi, T., Cadoux, F., Chai, J.Y., Dai, Z.G., Dong, Y.W., Gauvin, N., Hajdas, W., Lan, M.X., Li, H.C., Li, L., Li, Z.H., Liu, J.T., Liu, X., Marcinkowski, R., Produit, N., Orsi, S., Pohl, M., Rybka, D., Shi, H.L., Song, L.M., Sun, J.C., Szabelski, J., Tymieniecka, T., Wang, R.J., Wang, Y.H., Wen, X., Wu, B.B., Wu, X., Wu, X.F., Xiao, H.L., Xiong, S.L., Zhang, L.Y., Zhang, L., Zhang, X.F., Zhang, Y.J., Zwolinska, A.: Detailed polarization measurements of the prompt emission of five gamma-ray bursts. Nat. Astron. 3, 258–264 (2019). https://doi.org/10.1038/s41550-018-0664-0. arXiv:1901.04207. [astro-ph.HE]

  126. Sharma, V., Iyyani, S., Bhattacharya, D., Chattopadhyay, T., Rao, A.R., Aarthy, E., Vadawale, S.V., Mithun, N.P.S., Bhalerao, V.B., Ryde, F., Pe’er, A.: Time-varying Polarized Gamma-Rays from GRB 160821A: Evidence for Ordered Magnetic Fields. ApJ 882(1), L10 (2019). https://doi.org/10.3847/2041-8213/ab3a48. arXiv:1908.10885. [astro-ph.HE]

  127. Lazzati, D., Begelman, M.C.: Polarization Signature of Gamma-Ray Bursts from Fragmented Fireballs. ApJ. 700(2), L141–L144 (2009). https://doi.org/10.1088/0004-637X/700/2/L141. arXiv:0906.4337. [astro-ph.HE]

  128. Bala, S., Mate, S., Mehla, A., Sastry, P., Mithun, N.P.S., Palit, S., Chanda, M.V., Saraogi, D., Vaishnava, C.S., Waratkar, G., Bhalerao, V., Bhattacharya, D., Tendulkar, S., Vadawale, S.: Prospects of measuring gamma-ray burst polarization with the Daksha mission. Journal of Astronomical Telescopes, Instruments, and Systems. 9(4), 048,002 (2023). https://doi.org/10.1117/1.JATIS.9.4.048002

  129. Kaspi, V.M., Beloborodov, A.M.: Magnetars. ARA &A. 55(1), 261–301 (2017). https://doi.org/10.1146/annurev-astro-081915-023329. arXiv:1703.00068. [astro-ph.HE]

  130. Hurley, K., Boggs, S.E., Smith, D.M., Duncan, R.C., Lin, R., Zoglauer, A., Krucker, S., Hurford, G., Hudson, H., Wigger, C., Hajdas, W., Thompson, C., Mitrofanov, I., Sanin, A., Boynton, W., Fellows, C., von Kienlin, A., Lichti, G., Rau, A., Cline, T.: An exceptionally bright flare from SGR 1806-20 and the origins of short-duration \(\gamma \)-ray bursts. Nature. 434(7037), 1098–1103 (2005). https://doi.org/10.1038/nature03519. arXiv:astro-ph/0502329. [astro-ph]

  131. Taverna, R., Turolla, R.: On the spectrum and polarization of magnetar flare emission. MNRAS. 469(3), 3610–3628 (2017). https://doi.org/10.1093/mnras/stx1086. arXiv:1705.01130. [astro-ph.HE]

  132. Metzger, B.D., Margalit, B., Sironi, L.: Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. MNRAS. 485(3), 4091–4106 (2019). https://doi.org/10.1093/mnras/stz700. arXiv:1902.01866. [astro-ph.HE]

  133. Lyutikov, M., Popov, S.: Fast Radio Bursts from reconnection events in magnetar magnetospheres. arXiv e-prints arXiv:2005.05093 (2020). arXiv:2005.05093. [astro-ph.HE]

  134. Pshirkov, M.S., Postnov, K.A.: Radio precursors to neutron star binary mergings. Ap &SS. 330(1), 13–18 (2010). https://doi.org/10.1007/s10509-010-0395-x. arXiv:1004.5115. [astro-ph.HE]

  135. Totani, T.: Cosmological Fast Radio Bursts from Binary Neutron Star Mergers. PASJ. 65, L12 (2013). https://doi.org/10.1093/pasj/65.5.L12. arXiv:1307.4985. [astro-ph.HE]

  136. Mingarelli, C.M.F., Levin, J., Lazio, T.J.W.: Fast Radio Bursts and Radio Transients from Black Hole Batteries. ApJ. 814(2), L20 (2015). https://doi.org/10.1088/2041-8205/814/2/L20. arXiv:1511.02870. [astro-ph.HE]

  137. Paschalidis, V., Ruiz, M.: Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse?. Phys. Rev. D. 100(4), 043001 (2019). https://doi.org/10.1103/PhysRevD.100.043001. arXiv:1808.04822. [astro-ph.HE]

  138. Rowlinson, A., Anderson, G.E.: Constraining coherent low-frequency radio flares from compact binary mergers. MNRAS. 489(3), 3316–3333 (2019). https://doi.org/10.1093/mnras/stz2295. arXiv:1905.02509. [astro-ph.HE]

  139. Platts, E., Weltman, A., Walters, A., Tendulkar, S.P., Gordin, J.E.B., Kandhai, S.: A living theory catalogue for fast radio bursts. Phys. Rep. 821, 1–27 (2019). https://doi.org/10.1016/j.physrep.2019.06.003. arXiv:1810.05836. [astro-ph.HE]

  140. Petroff, E., Hessels, J.W.T., Lorimer, D.R.: Fast radio bursts. A &A Rep. 27(1), 4 (2019). https://doi.org/10.1007/s00159-019-0116-6. arXiv:1904.07947. [astro-ph.HE]

  141. Petroff, E., Hessels, J.W.T., Lorimer, D.R.: Fast radio bursts at the dawn of the 2020s. A &A Rev. 30(1), 2 (2022). https://doi.org/10.1007/s00159-022-00139-w. arXiv:2107.10113. [astro-ph.HE]

  142. Cunningham, V., Cenko, S.B., Burns, E., Goldstein, A., Lien, A., Kocevski, D., Briggs, M., Connaughton, V., Miller, M.C., Racusin, J., Stanbro, M.: A Search for High-energy Counterparts to Fast Radio Bursts. ApJ. 879(1), 40 (2019). https://doi.org/10.3847/1538-4357/ab2235. arXiv:1905.06818. [astro-ph.HE]

  143. Anumarlapudi, A., Bhalerao, V., Tendulkar, S.P., Balasubramanian, A.: Prompt X-Ray Emission from Fast Radio Bursts—Upper Limits with AstroSat. ApJ. 888(1), 40 (2020). https://doi.org/10.3847/1538-4357/ab5363. arXiv:1911.00537. [astro-ph.HE]

  144. Guidorzi, C., Marongiu, M., Martone, R., Nicastro, L., Xiong, S.L., Liao, J.Y., Li, G., Zhang, S.N., Amati, L., Frontera, F., Orlandini, M., Rosati, P., Virgilli, E., Zhang, S., Bu, Q.C., Cai, C., Cao, X.L., Chang, Z., Chen, G., Chen, L., Chen, T.X., Chen, Y.B., Chen, Y.P., Cui, W., Cui, W.W., Deng, J.K., Dong, Y.W., Du, Y.Y., Fu, M.X., Gao, G.H., Gao, H., Gao, M., Ge, M.Y., Gu, Y.D., Guan, J., Guo, C.C., Han, D.W., Huang, Y., Huo, J., Jia, S.M., Jiang, L.H., Jiang, W.C., Jin, J., Jin, Y.J., Kong, L.D., Li, B., Li, C.K., Li, M.S., Li, T.P., Li, W., Li, X., Li, X.B., Li, X.F., Li, Y.G., Li, Z.W., Liang, X.H., Liu, B.S., Liu, C.Z., Liu, G.Q., Liu, H.W., Liu, X.J., Liu, Y.N., Lu, B., Lu, F.J., Lu, X.F., Luo, Q., Luo, T., Ma, R.C., Ma, X., Meng, B., Nang, Y., Nie, J.Y., Ou, G., Qu, J.L., Sai, N., Shang, R.C., Song, L.M., Song, X.Y., Sun, L., Tan, Y., Tao, L., Tuo, Y.L. Wang, C., Wang, G.F., Wang, J., Wang, W.S., Wang, Y.S., Wen, X.Y., Wu, B.Y., Wu, B.B., Wu, M., Xiao, G.C., Xiao, S., Xu, Y.P., Yang, J.W., Yang, S., Yang, Y.J., Yi, Q.B., Yin, Q.Q., You, Y., Zhang, A.M., Zhang, C.M., Zhang, F., Zhang, H.M., Zhang, J., Zhang, T., Zhang, W.C., Zhang, W., Zhang, W.Z., Zhang, Y., Zhang, Y.F., Zhang, Y.J., Zhang, Y., Zhang, Z., Zhang, Z., Zhang, Z.L., Zhang, H.S., Zhang, X.F., Zheng, S.J., Zhou, D.K., Zhou, J.F., Zhu, Y.X., Zhu, Y., Zhuang, R.L.: A search for prompt \(\gamma \)-ray counterparts to fast radio bursts in the Insight-HXMT data. A &A. 637, A69 (2020). https://doi.org/10.1051/0004-6361/202037797. arXiv:2003.10889. [astro-ph.HE]

  145. Curtin, A.P., Tendulkar, S.P., Josephy, A., Chawla, P., Andersen, B., Kaspi, V.M., Bhardwaj, M., Cassanelli, T., Cook, A., Dong, F.A., Fonseca, E., Gaensler, B.M., Kaczmarek, J.F., Lanmnan, A.E., Leung, C., Pearlman, A.B., Petroff, E., Pleunis, Z., Rafiei-Ravandi, M., Ransom, S.M., Shin, K., Scholz, P., Smith, K., Stairs, I.: Limits on Fast Radio Burst-like Counterparts to Gamma-ray Bursts using CHIME/FRB. arXiv e-prints arXiv:2208.00803 (2022). arXiv:2208.00803. [astro-ph.HE]

  146. Principe, G., Omodei, N., Longo, F., Di Venere, L., Di Lalla, N.: Fermi-LAT Collaboration, in 37th International Cosmic Ray Conference. 12-23 July 2021. Berlin (2022), p. 624

  147. CHIME/FRB Collaboration, Andersen, B.C., Bandura, K.M., Bhardwaj, M., Bij, A., Boyce, M.M., Boyle, P.J., Brar, C., Cassanelli, T., Chawla, P., Chen, T., Cliche, J.F., Cook, A., Cubranic, D., Curtin, A.P., Denman, N.T., Dobbs, M., Dong, F.Q., Fandino, M., Fonseca, E. Gaensler, B.M., Giri, U., Good, D.C., Halpern, M., Hill, A.S., Hinshaw, G.F., Höfer, C., Josephy, A., Kania, J.W., Kaspi, V.M., Landecker, T.L., Leung, C., Li, D.Z., Lin, H.H., Masui, K.W., McKinven, R., Mena-Parra, J., Merryfield, M., Meyers, B.W., Michilli, D., Milutinovic, N., Mirhosseini, A., Münchmeyer, M., Naidu, A., Newburgh, L.B., Ng, C., Patel, C., Pen, U.L., Pinsonneault-Marotte, T., Pleunis, Z., Quine, B.M., Rafiei-Ravandi, M., Rahman, M., Ransom, S.M., Renard, A., Sanghavi, P., Scholz, P., Shaw, J.R., Shin, K., Siegel, S.R., Singh, S., Smegal, R.J., Smith, K.M., Stairs, I.H., Tan, C.M., Tendulkar, S.P., Tretyakov, I., Vanderlinde, K., Wang, H., Wulf, D., Zwaniga, A.V.: A bright millisecond-duration radio burst from a Galactic magnetar. Nature. 587(7832), 54–58 (2020). https://doi.org/10.1038/s41586-020-2863-y. arXiv:2005.10324. [astro-ph.HE]

  148. Bochenek, C.D., Ravi, V., Belov, K.V., Hallinan, G., Kocz, J., Kulkarni, S.R., McKenna, D.L.: A fast radio burst associated with a Galactic magnetar. Nature. 587(7832), 59–62 (2020). https://doi.org/10.1038/s41586-020-2872-x. arXiv:2005.10828. [astro-ph.HE]

  149. Mereghetti, S., Savchenko, V., Ferrigno, C., Götz, D., Rigoselli, M., Tiengo, A., Bazzano, A., Bozzo, E., Coleiro, A., Courvoisier, T.J.L., Doyle, M., Goldwurm, A., Hanlon, L., Jourdain, E., von Kienlin, A., Lutovinov, A., Martin-Carrillo, A., Molkov, S., Natalucci, L., Onori, F., Panessa, F., Rodi, J., Rodriguez, J., Sánchez-Fernández, C., Sunyaev, R., Ubertini, P.: INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. ApJ. 898(2), L29 (2020). https://doi.org/10.3847/2041-8213/aba2cf. arXiv:2005.06335. [astro-ph.HE]

  150. CHIME/FRB Collaboration, Amiri, M., Bandura, K., Berger, P., Bhardwaj, M., Boyce, M.M., Boyle, P.J., Brar, C., Burhanpurkar, M., Chawla, P., Chowdhury, J., Cliche, J.F., Cranmer, M.D., Cubranic, D., Deng, M., Denman, N., Dobbs, M., Fandino, M., Fonseca, E., Gaensler, B.M., Giri, U., Gilbert, A.J., Good, D.C., Guliani, S., Halpern, M., Hinshaw, G., Höfer, C., Josephy, A., Kaspi, V.M., Landecker, T.L., Lang, D., Liao, H., Masui, K.W., Mena-Parra, J., Naidu, A., Newburgh, L.B., Ng, C., Patel, C., Pen, U.L., Pinsonneault-Marotte, T., Pleunis, Z., Rafiei Ravandi, M., Ransom, S.M.,x Renard, A., Scholz, P., Sigurdson, K., Siegel, S.R., Smith, K.M., Stairs, I.H., Tendulkar, S.P., Vand erlinde, K., Wiebe, D.V.: The CHIME Fast Radio Burst Project: System Overview. ApJ. 863(1), 48 (2018). https://doi.org/10.3847/1538-4357/aad188. arXiv:1803.11235. [astro-ph.IM]

  151. Bannister, K.W., Shannon, R.M., Macquart, J.P., Flynn, C., Edwards, P.G., O’Neill, M., Osłowski, S., Bailes, M., Zackay, B., Clarke, N., D’Addario, L.R., Dodson, R., Hall, P.J., Jameson, A., Jones, D., Navarro, R., Trinh, J.T., Allison, J., Anderson, C.S., Bell, M., Chippendale, A.P., Collier, J.D., Heald, G., Heywood, I., Hotan, A.W., Lee-Waddell, K., Madrid, J.P., Marvil, J., McConnell, D., Popping, A., Voronkov, M.A., Whiting, M.T., Allen, G.R., Bock, D.C.J., Brodrick, D.P., Cooray, F., DeBoer, D.R., Diamond, P.J., Ekers, R., Gough, R.G., Hampson, G.A., Harvey-Smith, L., Hay, S.G., Hayman, D.B., Jackson, C.A., Johnston, S., Koribalski, B.S., McClure-Griffiths, N.M., Mirtschin, P., Ng, A., Norris, R.P., Pearce, S.E., Phillips, C.J., Roxby, D.N., Troup, E.R., Westmeier, T.: The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey. ApJ 841(1), L12 (2017). https://doi.org/10.3847/2041-8213/aa71ff. arXiv:1705.07581. [astro-ph.HE]

  152. Bochenek, C.D., McKenna, D.L., Belov, K.V., Kocz, J., Kulkarni, S.R., Lamb, J., Ravi, V., Woody, D.: STARE2: Detecting Fast Radio Bursts in the Milky Way. PASP. 132(1009), 034,202 (2020). https://doi.org/10.1088/1538-3873/ab63b3. arXiv:2001.05077. [astro-ph.HE]

  153. Lin, H.H., Lin, K.y., Li, C.T., Tseng, Y.H., Jiang, H., Wang, J.H., Cheng, J.C., Pen, U.L., Chen, M.T., Chen, P., Chen, Y., Goto, T., Hashimoto, T., Hwang, Y.J., King, S.K., Kubo, D., Kuo, C.Y., Mills, A., Nam, J., Oshiro, P., Shen, C.S., Tseng, H.C., Wang, S.H., Wu, V.F.S., Bower, G., Chang, S.H., Chen, P.A., Chen, Y.C., Chiang, Y.K., Fedynitch, A., Gusinskaia, N., Ho, S.C.C., Hsiao, T.Y.Y., Hu, C.P., Huang, Y.D., Jáuregui García, J.M., Kim, S.J., Kuo, C.Y., Ling, D.F.J., On, A.Y.L., Peterson, J.B., R. Raquel, B.J., Su, S.C., Uno, Y., Wu, C.K.W., Yamasaki, S., Zhu, H.M.: BURSTT: Bustling Universe Radio Survey Telescope in Taiwan. PASP 134(1039), 094106 (2022). https://doi.org/10.1088/1538-3873/ac8f71. arXiv:2206.08983. [astro-ph.IM]

  154. White, N.E., Swank, J.H., Holt, S.S.: Accretion powered X-ray pulsars. ApJ 270, 711–734 (1983). https://doi.org/10.1086/161162

    Article  Google Scholar 

  155. Nagase, F.: Accretion-powered X-ray pulsars. PASJ 41, 1 (1989)

    Google Scholar 

  156. Bildsten, L., Chakrabarty, D., Chiu, J., Finger, M.H., Koh, D.T., Nelson, R.W., Prince, T.A., Rubin, B.C., Scott, D.M., Stollberg, M., Vaughan, B.A., Wilson, C.A., Wilson, R.B.: Observations of Accreting Pulsars. SpJS 113(2), 367–408 (1997). https://doi.org/10.1086/313060. arXiv:astro-ph/9707125. [astro-ph]

  157. Malacaria, C., Jenke, P., Roberts, O.J., Wilson-Hodge, C.A., Cleveland, W.H., Mailyan, B., GBM Accreting Pulsars Program Team: The Ups and Downs of Accreting X-Ray Pulsars: Decade-long Observations with the Fermi Gamma-Ray Burst Monitor. ApJ 896(1), 90 (2020). https://doi.org/10.3847/1538-4357/ab855c. arXiv:2004.00051. [astro-ph.HE]

  158. Jenke, P.A., Finger, M.H., Wilson-Hodge, C.A., Camero-Arranz, A.: Orbital Decay and Evidence of Disk Formation in the X-Ray Binary Pulsar OAO 1657-415. ApJ 759(2), 124 (2012). https://doi.org/10.1088/0004-637X/759/2/124. arXiv:1112.5190. [astro-ph.HE]

  159. Manikantan, H., Paul, B., Roy, K., Rana, V.: Changes in the distribution of circum-binary material around the HMXB GX 301-2 during a rapid spin-up episode of the neutron star. MNRAS 520(1), 1411–1416 (2023). https://doi.org/10.1093/mnras/stad037. arXiv:2301.02815. [astro-ph.HE]

  160. Paul, B., Naik, S.: Transient High Mass X-ray Binaries. Bulletin of the Astronomical Society of India 39(3), 429–449 (2011). https://doi.org/10.48550/arXiv.1110.4446. arXiv:1110.4446. [astro-ph.HE]

  161. Sugizaki, M., Mihara, T., Nakajima, M., Makishima, K.: Correlation between the luminosity and spin-period changes during outbursts of 12 Be binary pulsars observed by the MAXI/GSC and the Fermi/GBM. PASJ 69(6), 100 (2017). https://doi.org/10.1093/pasj/psx119. arXiv:1709.07579. [astro-ph.HE]

  162. Zel’dovich, Y.B., Novikov, I.D.: The hypothesis of cores retarded during expansion and the hot cosmological model. Soviet Astronomy. 10, 602 (1967)

    ADS  Google Scholar 

  163. Hawking, S.: Gravitationally collapsed objects of very low mass. Monthly Notices of the Royal Astronomical Society 152(1), 75–78 (1971)

    Article  ADS  Google Scholar 

  164. Carr, B., Kühnel, F.: Primordial black holes as dark matter: recent developments. Annual Review of Nuclear and Particle Science 70, 355–394 (2020)

    Article  ADS  Google Scholar 

  165. Niikura, H., Takada, M., Yasuda, N., Lupton, R.H., Sumi, T., More, S., Kurita, T., Sugiyama, S., More, A., Oguri, M., et al.: Microlensing constraints on primordial black holes with subaru/hsc andromeda observations. Nat. Astron. 3(6), 524–534 (2019)

    Article  ADS  Google Scholar 

  166. Jung, S., Kim, T.: Gamma-ray burst lensing parallax: closing the primordial black hole dark matter mass window. Phys. Rev. Res. 2(1), 013113 (2020)

    Article  Google Scholar 

  167. Gawade, P., More, S., Bhalerao, V.: On the feasibility of primordial black hole abundance constraints using lensing parallax of GRBs. arXiv e-prints arXiv:2308.01775 (2023). https://doi.org/10.48550/arXiv.2308.01775. arXiv:2308.01775. [astro-ph.CO]

  168. Harmon, B.A., Fishman, G.J., Wilson, C.A., Paciesas, W.S., Zhang, S.N., Finger, M.H., Koshut, T.M., McCollough, M.L., Robinson, C.R., Rubin, B.C.: The Burst and Transient Source Experiment Earth Occultation Technique. ApJS. 138(1), 149–183 (2002). https://doi.org/10.1086/324018. arXiv:astro-ph/0109069. [astro-ph]

  169. Singhal, A., Srinivasan, R., Bhalerao, V., Bhattacharya, D., Rao, A.R., Vadawale, S.: Using collimated CZTI as all-sky X-ray detector based on Earth occultation technique. J. Astrophys. Astron. 42(2), 64 (2021). https://doi.org/10.1007/s12036-021-09743-1. arXiv:2105.09527. [astro-ph.IM]

  170. Oh, K., Koss, M., Markwardt, C.B., Schawinski, K., Baumgartner, W.H., Barthelmy, S.D., Cenko, S.B., Gehrels, N., Mushotzky, R., Petulante, A., Ricci, C., Lien, A., Trakhtenbrot, B.: The 105-Month Swift-BAT All-sky Hard X-Ray Survey. ApJS. 235(1), 4 (2018). https://doi.org/10.3847/1538-4365/aaa7fd. .arXiv:1801.01882. [astro-ph.HE]

  171. Moretti, A., Pagani, C., Cusumano, G., Campana, S., Perri, M., Abbey, A., Ajello, M., Beardmore, A.P., Burrows, D., Chincarini, G., Godet, O., Guidorzi, C., Hill, J.E., Kennea, J., Nousek, J., Osborne, J.P., Tagliaferri, G.: A new measurement of the cosmic X-ray background. A & A. 493(2), 501–509 (2009). https://doi.org/10.1051/0004-6361:200811197

    Article  ADS  Google Scholar 

  172. Senziani, F., Skinner, G., Jean, P., Hernanz, M.: In: RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, Astronomical Society of the Pacific Conference Series, vol. 401, ed. by Evans, A., Bode, M.F., O’Brien, T.J., Darnley M.J. (2008), p. 323

  173. Gordon, A.C., Aydi, E., Page, K.L., Li, K.L., Chomiuk, L., Sokolovsky, K.V., Mukai, K., Seitz, J.: Surveying the X-Ray Behavior of Novae as They Emit \(\gamma \)-Rays. ApJ. 910(2), 134 (2021). https://doi.org/10.3847/1538-4357/abe547. arXiv:2010.15930. [astro-ph.HE]

  174. Senziani, F., Skinner, G.K., Jean, P., Hernanz, M.: Detectability of gamma-ray emission from classical novae with Swift/BAT. A & A. 485(1), 223–231 (2008). https://doi.org/10.1051/0004-6361:200809863. arXiv:0804.4791. [astro-ph]

  175. Bode, M.F., O’Brien, T.J., Osborne, J.P., Page, K.L., Senziani, F., Skinner, G.K., Starrfield, S., Ness, J.U., Drake, J.J., Schwarz, G., Beardmore, A.P., Darnley, M.J., Eyres, S.P.S., Evans, A., Gehrels, N., Goad, M.R., Jean, P., Krautter, J., Novara, G.: Swift Observations of the 2006 Outburst of the Recurrent Nova RS Ophiuchi. I. Early X-Ray Emission from the Shocked Ejecta and Red Giant Wind. ApJ. 652(1), 629–635 (2006). https://doi.org/10.1086/507980. arXiv:astro-ph/0604618. [astro-ph]

  176. Tuerler, M., Ferrigno, C., Eckert, D., Watanabe, K., Kuulkers, E.: INTEGRAL hard X-ray observation of the nova GK Per during its 2015 outburst. The Astronomer’s Telegram. 7244, 1 (2015)

    ADS  Google Scholar 

  177. Nelson, T., Mukai, K., Li, K.L., Vurm, I., Metzger, B.D., Chomiuk, L., Sokoloski, J.L., Linford, J.D., Bohlsen, T., Luckas, P.: NuSTAR Detection of X-Rays Concurrent with Gamma-Rays in the Nova V5855 Sgr. ApJ. 872(1), 86 (2019). https://doi.org/10.3847/1538-4357/aafb6d. arXiv:1901.00030. [astro-ph.HE]

  178. Sokolovsky, K.V., Mukai, K., Chomiuk, L., Lopes de Oliveira, R., Aydi, E., Li, K.L., Steinberg, E., Vurm, I., Metzger, B.D., Kawash, A., Linford, J.D., Mioduszewski, A.J., Nelson, T., Ness, J.U., Page, K.L., Rupen, M.P., Sokoloski, J.L., Strader, J.: X-ray spectroscopy of the \(\gamma \)-ray brightest nova V906 Car (ASASSN-18fv). MNRAS. 497(3), 2569–2585 (2020). https://doi.org/10.1093/mnras/staa2104. arXiv:2007.07885. [astro-ph.HE]

  179. Sokolovsky, K.V., Li, K.L., Lopes de Oliveira, R., Ness, J.U., Mukai, K., Chomiuk, L., Aydi, E., Steinberg, E., Vurm, I., Metzger, B.D., Babul, A.N., Kawash, A., Linford, J.D., Nelson, T., Page, K.L., Rupen, M.P., Sokoloski, J.L., Strader, J., Kilkenny, D.: The first nova eruption in a novalike variable: YZ Ret as seen in X-rays and \(\gamma \)-rays. MNRAS. 514(2), 2239–2258 (2022). https://doi.org/10.1093/mnras/stac1440. arXiv:2108.03241. [astro-ph.HE]

  180. Page, K.L., Beardmore, A.P., Osborne, J.P., Munari, U., Ness, J.U., Evans, P.A., Bode, M.F., Darnley, M.J., Drake, J.J., Kuin, N.P.M., O’Brien, T.J., Orio, M., Shore, S.N., Starrfield, S., Woodward, C.E.: The 2021 outburst of the recurrent nova RS Ophiuchi observed in X-rays by the Neil Gehrels Swift Observatory: a comparative study. MNRAS. 514(2), 1557–1574 (2022). https://doi.org/10.1093/mnras/stac1295. arXiv:2205.03232. [astro-ph.HE]

  181. Grebenev, S.A., Prosvetov, A.V., Burenin, R.A., Krivonos, R.A., Mescheryakov, A.V.: X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst. Astron. Lett. 42(2), 69–81 (2016). https://doi.org/10.1134/S1063773716020031. arXiv:1604.00158. [astro-ph.HE]

  182. Mereminskiy, I.A., Filippova, E.V., Krivonos, R.A., Grebenev, S.A., Burenin, R.A., Sunyaev, R.A.: The outburst of the X-ray nova GRS 1739-278 in September 2016. Astron. Lett. 43(3), 167–174 (2017). https://doi.org/10.1134/S1063773717030057. arXiv:1610.08102. [astro-ph.HE]

  183. Mereminskiy, I.A., Grebenev, S.A., Prosvetov, A.V., Semena, A.N.: Low-Frequency Quasi-Periodic Oscillations in the X-ray Nova MAXI J1535-571 at the Initial Stage of Its 2017 Outburst. Astron. Lett. 44(6), 378–389 (2018). https://doi.org/10.1134/S106377371806004X. arXiv:1806.06025. [astro-ph.HE]

  184. Fishman, G.J., Bhat, P.N., Mallozzi, R., Horack, J.M., Koshut, T., Kouveliotou, C., Pendleton, G.N., Meegan, C.A., Wilson, R.B., Paciesas, W.S., Goodman, S.J., Christian, H.J.: Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin. Science. 264(5163), 1313–1316 (1994). https://doi.org/10.1126/science.264.5163.1313

    Article  ADS  Google Scholar 

  185. Tavani, M., Marisaldi, M., Labanti, C., Fuschino, F., Argan, A., Trois, A., Giommi, P., Colafrancesco, S., Pittori, C., Palma, F., Trifoglio, M., Gianotti, F., Bulgarelli, A., Vittorini, V., Verrecchia, F., Salotti, L., Barbiellini, G., Caraveo, P., Cattaneo, P.W., Chen, A., Contessi, T., Costa, E., D’Ammando, F., Del Monte, E., de Paris, G., Di Cocco, G., di Persio, G., Donnarumma, I., Evangelista, Y., Feroci, M., Ferrari, A., Galli, M., Giuliani, A., Giusti, M., Lapshov, I., Lazzarotto, F., Lipari, P., Longo, F., Mereghetti, S., Morelli, E., Moretti, E., Morselli, A., Pacciani, L., Pellizzoni, A., Perotti, F., Piano, G., Picozza, P., Pilia, M., Pucella, G., Prest, M., Rapisarda, M., Rappoldi, A., Rossi, E., Rubini, A., Sabatini, S., Scalise, E., Soffitta, P., Striani, E., Vallazza, E., Vercellone, S., Zambra, A., Zanello, D.: Terrestrial Gamma-Ray Flashes as Powerful Particle Accelerators. Phys. Rev. Lett. 106(1), 018501 (2011). https://doi.org/10.1103/PhysRevLett.106.018501

    Article  ADS  Google Scholar 

  186. Carlson, B.E., Lehtinen, N.G., Inan, U.S.: Constraints on terrestrial gamma ray flash production from satellite observation. Geophys. Res Lett. 34(8), L08809 (2007). https://doi.org/10.1029/2006GL029229

    Article  ADS  Google Scholar 

  187. Dwyer, J.R., Smith, D.M., Cummer, S.A.: High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena. Space Sci. Rev. 173(1–4), 133–196 (2012). https://doi.org/10.1007/s11214-012-9894-0

    Article  ADS  Google Scholar 

  188. Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., Kasahara, S., Yokota, S., Kazama, Y., Wang, S.Y., Tam, S.W.Y., Ho, P.T.P., Kasahara, Y., Kasaba, Y., Yagitani, S., Matsuoka, A., Kojima, H., Katoh, Y., Shiokawa, K., Seki, K.: Geospace exploration project ERG. Earth, Planets and Space. 70(1), 101 (2018). https://doi.org/10.1186/s40623-018-0862-0

    Article  ADS  Google Scholar 

  189. Østgaard, N., Neubert, T., Reglero, V., Ullaland, K., Yang, S., Genov, G., Marisaldi, M., Mezentsev, A., Kochkin, P., Lehtinen, N., Sarria, D., Qureshi, B.H., Solberg, A., Maiorana, C., Albrechtsen, K., Budtz-Jørgensen, C., Kuvvetli, I., Christiansen, F., Chanrion, O., Heumesser, M., Navarro-Gonzalez, J., Connell, P., Eyles, C., Christian, H., Al-nussirat, S.: First 10 Months of TGF Observations by ASIM. Journal of Geophysical Research (Atmospheres). 124(24), 14024–14036 (2019). https://doi.org/10.1029/2019JD031214

    Article  ADS  Google Scholar 

  190. Roberts, O.J., Fitzpatrick, G., Stanbro, M., McBreen, S., Briggs, M.S., Holzworth, R.H., Grove, J.E., Chekhtman, A., Cramer, E.S., Mailyan, B.G.: The First Fermi-GBM Terrestrial Gamma Ray Flash Catalog. J. Geophys. Res. (Space Physics) 123(5), 4381–4401 (2018). https://doi.org/10.1029/2017JA024837

    Article  ADS  Google Scholar 

  191. Bagheri, M., Dwyer, J.R., McConnell, M.L.: On the Linear Polarization of TGFs and X-Rays From Natural and Rocket-Triggered Lightning and Its Association With Source Geometry. Journal of Geophysical Research (Space Physics). 124(11), 9166–9183 (2019). https://doi.org/10.1029/2019JA026570

    Article  ADS  Google Scholar 

  192. Hariharan, B., Dugad, S.R., Gupta, S.K., Hayashi, Y., Inbanathan, S.S.R., Jagadeesan, P., Jain, A., Kawakami, S., Mohanty, P.K., Rao, B.S.: Modeling of rigidity dependent CORSIKA simulations for GRAPES-3. Exp. Astron. 48(2-3), 111–120 (2019). https://doi.org/10.1007/s10686-019-09640-0. arXiv:1908.05948. [astro-ph.IM]

  193. Vichare, G., Bhaskar, A., Datar, G., Raghav, A., Nair, K.U., Selvaraj, C., Ananthi, M., Sinha, A.K., Paranjape, M., Gawade, T., Anil Kumar, C.P., Panneerselvam, C., Sathishkumar, S., Gurubaran, S.: Equatorial secondary cosmic ray observatory to study space weather and terrestrial events. Adv. Space Res. 61(10), 2555–2568 (2018). https://doi.org/10.1016/j.asr.2018.03.006

    Article  ADS  Google Scholar 

  194. Uma, K.N., Rao, T.N.: Characteristics of Vertical Velocity Cores in Different Convective Systems Observed over Gadanki. India. Monthly Weather Review. 137(3), 954 (2009). https://doi.org/10.1175/2008MWR2677.1

    Article  ADS  Google Scholar 

  195. Subrahmanyam, K.V., Kumar, K.K.: C-band polarimetric doppler weather radar observations during an extreme precipitation event and associated dynamics over peninsular india. Natural Hazards. 114(2), 1307–1322 (2022). https://doi.org/10.1007/s11069-022-05426-4

    Article  Google Scholar 

  196. Benz, A.O.: Flare Observations. Living Reviews in Solar Physics. 14(1), 2 (2017). https://doi.org/10.1007/s41116-016-0004-3

    Article  MathSciNet  ADS  Google Scholar 

  197. Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., Hudson, H.S., MacKinnon, A.L., Masuda, S., Sui, L., Tomczak, M., Veronig, A.L., Vlahos, L., White, S.M.: Hard X-ray emission from the solar corona. A &A Rev. 16, 155–208 (2008). https://doi.org/10.1007/s00159-008-0014-9

    Article  ADS  Google Scholar 

  198. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol. Phys. 210(1), 3–32 (2002). https://doi.org/10.1023/A:1022428818870

    Article  ADS  Google Scholar 

  199. Hannah, I.G., Christe, S., Krucker, S., Hurford, G.J.,x Hudson, H.S., Lin, R.P.: RHESSI Microflare Statistics. II. X-Ray Imaging, Spectroscopy, and Energy Distributions. ApJ. 677(1), 704–718 (2008). https://doi.org/10.1086/529012. arXiv:0712.2544. [astro-ph]

  200. Krucker, S., Hurford, G.J., Grimm, O., Kögl, S., Gröbelbauer, H.P., Etesi, L., Casadei, D., Csillaghy, A., Benz, A.O., Arnold, N.G., Molendini, F., Orleanski, P., Schori, D., Xiao, H., Kuhar, M.E.A.: The Spectrometer/Telescope for Imaging X-rays (STIX). A &A. 642, A15 (2020). https://doi.org/10.1051/0004-6361/201937362

    Article  Google Scholar 

  201. Seetha, S., Megala, S.: Aditya-L1 mission. Curr. Sci. 113(4), 610 (2017). https://doi.org/10.18520/cs/v113/i04/610-612

  202. Katsuda, S., Ohno, M., Mori, K., Beppu, T., Kanemaru, Y., Tashiro, M.S.,  Terada, Y., Sato, K., Morita, K., Sagara, H., Ogawa, F., Takahashi, H.,  Murakami, H., Nobukawa, M., Tsunemi, H., Hayashida, K., Matsumoto, H.,  Noda, H., Nakajima, H., Ezoe, Y., Tsuboi, Y., Maeda, Y., Yokoyama, T.,  Narukage, N.: Inverse First Ionization Potential Effects in Giant Solar Flares Found from Earth X-Ray Albedo with Suzaku/XIS. ApJ. 891(2), 126 (2020). https://doi.org/10.3847/1538-4357/ab7207. arXiv:2001.10643. [astro-ph.SR]

  203. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37. https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5725236

  204. Hunter, J.D.: Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55. https://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55

  205. Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, P.,  Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A.M.,x Kerzendorf, W.E., Conley, A., Crighton, N., Barbary, K.,  Muna, D., Ferguson, H., Grollier, F., Parikh, M.M., Nair, P.H., Unther, H.M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J.E.H., Singer, L., Fox, R., Weaver, B.A., Zabalza, V., Edwards, Z.I.,  Azalee Bostroem, K., Burke, D.J., Casey, A.R., Crawford, S.M.,  Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P.L.,  Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M.,  Streicher, O.: Astropy: A community Python package for astronomy. A &A. 558, A33 (2013). https://doi.org/10.1051/0004-6361/201322068. arXiv:1307.6212. [astro-ph.IM]

  206. Astropy Collaboration, Price-Whelan, A.M., Sipőcz, B.M., Günther, H.M., Lim, P.L., Crawford, S.M., Conseil, S., Shupe, D.L., Craig, M.W., Dencheva, N., Ginsburg, A., VanderPlas, J.T., Bradley, L.D.,  Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T.L., Cruz, K.L., Robitaille, T.P., Tollerud, E.J., Ardelean, C., Babej, T., Bach, Y.P.,  Bachetti, M., Bakanov, A.V., Bamford, S.P., Barentsen, G., Barmby, P.,  Baumbach, A., Berry, K.L., Biscani, F., Boquien, M., Bostroem, K.A., Bouma, L.G., Brammer, G.B., Bray, E.M., Breytenbach, H.,  Buddelmeijer, H., Burke, D.J., Calderone, G., Cano Rodríguez, J.L.,  Cara, M., Cardoso, J.V.M., Cheedella, S., Copin, Y., Corrales, L.,  Crichton, D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J.P.,  Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L.A., Finethy, T., Fox, R.T., Garrison, L.H., Gibbons, S.L.J., Goldstein, D.A., Gommers, R., Greco, J.P., Greenfield, P., Groener, A.M.,  Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A.J.,  Hosseinzadeh, G., Hu, L., Hunkeler, J.S., Ivezić, Ž.,  Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N.S., Kerzendorf, W.E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A.M.,  Kumar, A., Lee, A., Lenz, D., Littlefair, S.P., Ma, Z., Macleod, D.M.,  Mastropietro, M., McCully, C., Montagnac, S., Morris, B.M., Mueller, M., Mumford, S.J., Muna, D., Murphy, N.A., Nelson, S., Nguyen, G.H., Ninan, J.P., Nöthe, M., Ogaz, S., Oh, S., Parejko, J.K., Parley, N.,  Pascual, S., Patil, R., Patil, A.A., Plunkett, A.L., Prochaska, J.X.,  Rastogi, T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L.E., Sherwood-Taylor, H., Shih, A.Y., Sick, J., Silbiger, M.T., Singanamalla, S., Singer, L.P., Sladen, P.H., Sooley, K.A.,  Sornarajah, S., Streicher, O., Teuben, P., Thomas, S.W., Tremblay, G.R., Turner, J.E.H., Terrón, V., van Kerkwijk, M.H., de la Vega, A., Watkins, L.L., Weaver, B.A., Whitmore, J.B., Woillez, J., Zabalza, V., Astropy Contributors: The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. AJ. 156(3), 123 (2018). https://doi.org/10.3847/1538-3881/aabc4f. arXiv:1801.02634. [astro-ph.IM]

  207. Gorski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophys. J. 622(2), 759–771 (2005). https://doi.org/10.1086/427976. https://adsabs.harvard.edu/abs/2005ApJ...622.759G

  208. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P.,  Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L.,  Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J.,  Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A.,  Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H.,  Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R.,  Gibin, D., Gomez Cadenas, J.J., Gonzalez, I., Gracia Abril, G., Greeniaus, G.,  Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P.,  Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V.,  Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y.,  Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R.,  Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F.,  Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E.,  Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M.,  Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S.,  Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G.,x Ranjard, F., Rybin, A.,  Sadilov, S., di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y.,  Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H.,  Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E.,  Tropeano, M., Truscott, P., Uno, H.,x Urban, L., Urban, P., Verderi, M., Walkden, A.,  Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D.,  Yamada, T., Yoshida, H., Zschiesche, D.: GEANT4 - A simulation toolkit. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

Download references

Acknowledgements

We thank the Space Program Office (SPO) of the Indian Space Research Organisation for its Announcement of Opportunity for space astrophysics missions, under which Daksha was proposed. Development of the Daksha MEP laboratory model was started with funding support from SPO. We thank the administrative and support staff at all partner institutes for their help in all Daksha -related matters.

DS was supported under the CEFIPRA Grant No. IFC/5404-1. AP acknowledges the SERB Matrics grant MTR/2019/001096 and SERB-Power-fellowship grant SPF/2021/000036 of Department of Science and Technology, India for support.

Funding

Development of Daksha was supported by a seed grant awarded to IIT Bombay from the Indian Space Research Organization. Further expenses were also supported by the partner institutes including direct and in-kind contributions.

Author information

Authors and Affiliations

Authors

Contributions

Varun Bhalerao, Disha Sawant, Archana Pai, Shriharsh Tendulkar, Santosh Vadawale, Dipankar Bhattacharya, Vikram Rana, Gulab Dewangan contributed to overall definition and development of the mission science goals. The mission technical team that includes APK Kutty, Abhijeet Ghodgaonkar, Amit Shetye, Amrutha Lakshmi Vadladi, Arpit Patel, Ayush Nema, B.S. Bharath Saiguhan, Deepak Marla, Guruprasad P J, Hitesh Kumar L. Adalja, Hrishikesh Belatikar, Jayprakash G. Koyande, Jinaykumar Patel, M. Shanmugam, Mahesh Bhaganagare, Neeraj K. Tiwari, Nishant Singh, Piyush Sharma, Prabhu Ramachandran, Priya Pradeep, Rakesh Mote, S. Sreekumar, Salil Kulkarni, Sandeep Vishwakarma, Sanjoli Narang, Shiv Kumar Goyal, Shreeya Singh, Siddharth Tallur, Srividhya Sridhar, Suddhasatta Mahapatra, Sudhanshu Nimbalkar, Suresh Gunasekaran, Tinkal Ladiya contributed to developing and testing various hardware aspects of the mission, and their results were key for calculating sensitivity of the detectors for various science cases. Akshat Singhal, Brad Cenko, Gaurav Waratkar, Kenta Hotokezaka, Mansi Kasliwal, Paz Beniamini, Rahul Srinivasan, Samaya Nissanke, Smaranika Banerjee, Soumyadeep Bhattacharjee, Sukanta Bose contributed to discussions, calculations and verification pertaining to the electromagnetic counterparts of gravitational wave sources. Advait Mehla, C. S. Vaishnava, Dipanjan Mukherjee, Divita Saraogi, Joseph Saji, M. Saleem, Mehul Vijay Chanda, N. P. S. Mithun, Parth Sastry, Shabnam Iyyani, Sourav Palit, Sujay Mate, Suman Bala contributed to the science of Gamma-Ray Bursts and polarization measurements. On broader science cases, Priyanka Gawade and Surhud More contributed to studies of primordial black holes; Vishal Dixit, Ankush Bhaskar, Shyama Narendranath contributed to to terrestrial studies; Biswajit Paul, Manikantan Hemanth, Kinjal Roy contributed to pulsars and X-ray binaries; G C Anupama, Judhajeet Basu, Anirban Dutta contributed to novae and slow transients.

Corresponding author

Correspondence to Varun Bhalerao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Software

Numpy [203], Matplotlib [204], Astropy [205, 206, http://www.astropy.org], HealPIX [207], Healpy (https://healpy.readthedocs.org/), Ephem (https://pypi.python.org/pypi/pyephem/), WebPlot Digitizer https://automeris.io/WebPlotDigitizer, GEANT4 [208, https://geant4.web.cern.ch/]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalerao, V., Sawant, D., Pai, A. et al. Science with the Daksha high energy transients mission. Exp Astron 57, 23 (2024). https://doi.org/10.1007/s10686-024-09923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09923-1

Keywords

Navigation