Skip to main content
Log in

MeV astrophysical spectroscopic surveyor (MASS): a compton telescope mission concept

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We propose a future mission concept, the MeV Astrophysical Spectroscopic Surveyor (MASS), which is a large area Compton telescope using 3D position sensitive cadmium zinc telluride (CZT) detectors optimized for emission line detection. The payload consists of two layers of CZT detectors in a misaligned chessboard layout, with a total geometric area of 4096 cm\(^2\) for on-axis observations. The detectors can be operated at room-temperature with an energy resolution of 0.6% at 0.662 MeV. The in-orbit background is estimated with a mass model. At energies around 1 MeV, a line sensitivity of about \(10^{-5}\) photons cm\(^{-2}\) s\(^{-1}\) can be obtained with a 1 Ms observation. The main science objectives of MASS include nucleosynthesis in astrophysics and high energy astrophysics related to compact objects and transient sources. The payload CZT detectors weigh roughly 40 kg, suggesting that it can be integrated into a micro- or mini-satellite. We have constructed a pathfinder, named as MASS-Cube, to have a direct test of the technique with 4 detector units in space in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Data sets generated during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://www.redlen.com/

  2. https://www.caen.it/

  3. https://geant4.web.cern.ch

  4. Obtained from SPENVIS (https://www.spenvis.oma.be).

References

  1. Kierans, C., Takahashi, T., Kanbach, G.: Compton Telescopes for Gamma-Ray Astrophysics. In: Handbook of X-ray and Gamma-ray Astrophysics, p. 18 (2022). https://doi.org/10.1007/978-981-16-4544-0_46-1

  2. Maoz, D., Mannucci, F., Nelemans, G.: Observational Clues to the Progenitors of Type Ia Supernovae. 52, 107–170 (2014). https://doi.org/10.1146/annurev-astro-082812-141031. arXiv:1312.0628

    Article  CAS  Google Scholar 

  3. Timmes, F., Fryer, C., Timmes, F., Hungerford, A.L., Couture, A., Adams, F., Aoki, W., Arcones, A., Arnett, D., Auchettl, K., Avila, M., Badenes, C., Baron, E., Bauswein, A., Beacom, J., Blackmon, J., Blondin, S., Bloser, P., Boggs, S., Boss, A., Brandt, T., Bravo, E., Brown, E., Brown, P., Bruenn, S., Budtz-Jørgensen, C., Burns, E., Calder, A., Caputo, R., Champagne, A., Chevalier, R., Chieffi, A., Chipps, K., Cinabro, D., Clarkson, O., Clayton, D., Coc, A., Connolly, D., Conroy, C., Côté, B., Couch, S., Dauphas, N., deBoer, R.J., Deibel, C., Denisenkov, P., Desch, S., Dessart, L., Diehl, R., Doherty, C., Domínguez, I., Dong, S., Dwarkadas, V., Fan, D., Fields, B., Fields, C., Filippenko, A., Fisher, R., Foucart, F., Fransson, C., Fröhlich, C., Fuller, G., Gibson, B., Giryanskaya, V., Görres, J., Goriely, S., Grebenev, S., Grefenstette, B., Grohs, E., Guillochon, J., Harpole, A., Harris, C., Harris, J.A., Harrison, F., Hartmann, D., Hashimoto, M.-a., Heger, A., Hernanz, M., Herwig, F., Hirschi, R., Hix, W.R., Höflich, P., Hoffman, R., Holcomb, C., Hsiao, E., Iliadis, C., Janiuk, A., Janka, T., Jerkstrand, A., Johns, L., Jones, S., José, J., Kajino, T., Karakas, A., Karpov, P., Kasen, D., Kierans, C., Kippen, M., Korobkin, O., Kobayashi, C., Kozma, C., Krot, S., Kumar, P., Kuvvetli, I., Laird, A., Laming, J.M., Larsson, J., Lattanzio, J., Lattimer, J., Leising, M., Lennarz, A., Lentz, E., Limongi, M., Lippuner, J., Livne, E., Lloyd-Ronning, N., Longland, R., Lopez, L.A., Lugaro, M., Lutovinov, A., Madsen, K., Malone, C., Matteucci, F., McEnery, J., Meisel, Z., Messer, B., Metzger, B., Meyer, B., Meynet, G., Mezzacappa, A., Miller, J., Miller, R., Milne, P., Misch, W., Mitchell, L., Mösta, P., Motizuki, Y., Müller, B., Mumpower, M., Murphy, J., Nagataki, S., Nakar, E., Nomoto, K., Nugent, P., Nunes, F., O’Shea, B., Oberlack, U., Pain, S., Parker, L., Perego, A., Pignatari, M., Pinedo, G.M., Plewa, T., Poznanski, D., Priedhorsky, W., Pritychenko, B., Radice, D., Ramirez-Ruiz, E., Rauscher, T., Reddy, S., Rehm, E., Reifarth, R., Richman, D., Ricker, P., Rijal, N., Roberts, L., Röpke, F., Rosswog, S., Ruiter, A.J., Ruiz, C., Savin, D.W., Schatz, H., Schneider, D., Schwab, J., Seitenzahl, I., Shen, K., Siegert, T., Sim, S., Smith, D., Smith, K., Smith, M., Sollerman, J., Sprouse, T., Spyrou, A., Starrfield, S., Steiner, A., Strong, A.W., Sukhbold, T., Suntzeff, N., Surman, R., Tanimori, T., The, L.-S., Thielemann, F.-K., Tolstov, A., Tominaga, N., Tomsick, J., Townsley, D., Tsintari, P., Tsygankov, S., Vartanyan, D., Venters, T., Vestrand, T., Vink, J., Waldman, R., Wang, L., Wang, X., Warren, M., West, C., Wheeler, J.C., Wiescher, M., Winkler, C., Winter, L., Wolf, B., Woolf, R., Woosley, S., Wu, J., Wrede, C., Yamada, S., Young, P., Zegers, R., Zingale, M., Portegies Zwart, S.: Catching Element Formation In The Act ; The Case for a New MeV Gamma-Ray Mission: Radionuclide Astronomy in the 2020s. 51(3), 2 (2019). https://doi.org/10.48550/arXiv.1902.02915. arXiv:1902.02915

  4. Phillips, M.M.: The Absolute Magnitudes of Type IA Supernovae. 413, 105 (1993). https://doi.org/10.1086/186970

    Article  Google Scholar 

  5. Phillips, M.M., Lira, P., Suntzeff, N.B., Schommer, R.A., Hamuy, M., Maza, J.: The Reddening-Free Decline Rate Versus Luminosity Relationship for Type IA Supernovae. 118(4), 1766–1776 (1999). https://doi.org/10.1086/301032arXiv:9907052

  6. Wang, X., Fields, B.D., Lien, A.Y.: Using gamma ray monitoring to avoid missing the next Milky Way Type Ia supernova. 486(2), 2910–2918 (2019). https://doi.org/10.1093/mnras/stz993. arXiv:1904.04310

  7. The, L.-S., Clayton, D.D., Jin, L., Meyer, B.S.: Nuclear Reactions Governing the Nucleosynthesis of \(^{44}\)Ti. 504(1), 500–515 (1998). https://doi.org/10.1086/306057. arXiv:astro-ph/9806211

  8. Wongwathanarat, A., Janka, H.-T., Müller, E., Pllumbi, E., Wanajo, S.: Production and Distribution of \(^{44}\)Ti and \(^{56}\)Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A. 842(1), 13 (2017). https://doi.org/10.3847/1538-4357/aa72de. arXiv:1610.05643

  9. Matz, S.M., Share, G.H., Leising, M.D., Chupp, E.L., Vestrand, W.T., Purcell, W.R., Strickman, M.S., Reppin, C.: Gamma-ray line emission from SN1987A. 331(6155), 416–418 (1988). https://doi.org/10.1038/331416a0

  10. Churazov, E., Sunyaev, R., Isern, J., Bikmaev, I., Bravo, E., Chugai, N., Grebenev, S., Jean, P., Knödlseder, J., Lebrun, F., Kuulkers, E.: Gamma-rays from Type Ia Supernova SN2014J. 812(1), 62 (2015) https://doi.org/10.1088/0004-637X/812/1/62. arXiv:1502.00255

  11. Renaud, M., Vink, J., Decourchelle, A., Lebrun, F., den Hartog, P.R., Terrier, R., Couvreur, C., Knödlseder, J., Martin, P., Prantzos, N., Bykov, A.M., Bloemen, H.: The Signature of \(^{44}\)Ti in Cassiopeia A Revealed by IBIS/ISGRI on INTEGRAL. 647(1), 41–44 (2006). https://doi.org/10.1086/507300. arXiv:astro-ph/0606736

  12. The, L.-S., Burrows, A., Bussard, R.: X-Ray and Gamma-Ray Fluxes from SN 1987A. 352, 731 (1990). https://doi.org/10.1086/168575

  13. Tsygankov, S.S., Krivonos, R.A., Lutovinov, A.A., Revnivtsev, M.G., Churazov, E.M., Sunyaev, R.A., Grebenev, S.A.: Galactic survey of \(^{44}\)Ti sources with the IBIS telescope onboard INTEGRAL. 458(4), 3411–3419 (2016). https://doi.org/10.1093/mnras/stw549. arXiv:1603.01264

  14. Burbidge, E.M., Burbidge, G.R., Fowler, W.A., Hoyle, F.: Synthesis of the Elements in Stars. Rev. Mod. Phys. 29(4), 547–650 (1957). https://doi.org/10.1103/RevModPhys.29.547

    Article  ADS  Google Scholar 

  15. Wang, W., Siegert, T., Dai, Z.G., Diehl, R., Greiner, J., Heger, A., Krause, M., Lang, M., Pleintinger, M.M.M., Zhang, X.L.: Gamma-Ray Emission of \(^{60}\)Fe and \(^{26}\)Al Radioactivity in Our Galaxy. 889(2), 169 (2020). https://doi.org/10.3847/1538-4357/ab6336. arXiv:1912.07874

  16. Diehl, R., Halloin, H., Kretschmer, K., Strong, A.W., Wang, W., Jean, P., Lichti, G.G., Knödlseder, J., Roques, J.-P., Schanne, S., Schönfelder, V., von Kienlin, A., Weidenspointner, G., Winkler, C., Wunderer, C.: \(^{26}\)Al in the inner Galaxy. Large-scale spectral characteristics derived with SPI/INTEGRAL. 449(3), 1025–1031 (2006). https://doi.org/10.1051/0004-6361:20054301. arXiv:astro-ph/0512334

    Article  CAS  Google Scholar 

  17. Wang, W., Harris, M.J., Diehl, R., Halloin, H., Cordier, B., Strong, A.W., Kretschmer, K., Knödlseder, J., Jean, P., Lichti, G.G., Roques, J.P., Schanne, S., von Kienlin, A., Weidenspointner, G., Wunderer, C.: SPI observations of the diffuse \(^{60}\)Fe emission in the Galaxy. 469(3), 1005–1012 (2007). https://doi.org/10.1051/0004-6361:20066982. arXiv:0704.3895

  18. Wu, M.-R., Banerjee, P., Metzger, B.D., Martínez-Pinedo, G., Aramaki, T., Burns, E., Hailey, C.J., Barnes, J., Karagiorgi, G.: Finding the Remnants of the Milky Way’s Last Neutron Star Mergers. 880(1), 23 (2019). https://doi.org/10.3847/1538-4357/ab2593. arXiv:1905.03793

  19. Knödlseder, J., Jean, P., Lonjou, V., Weidenspointner, G., Guessoum, N., Gillard, W., Skinner, G., von Ballmoos, P., Vedrenne, G., Roques, J.-P., Schanne, S., Teegarden, B., Schönfelder, V., Winkler, C.: The all-sky distribution of 511 keV electron-positron annihilation emission. 441(2), 513–532 (2005). https://doi.org/10.1051/0004-6361:20042063. arXiv:astro-ph/0506026

  20. Siegert, T., Diehl, R., Khachatryan, G., Krause, M.G.H., Guglielmetti, F., Greiner, J., Strong, A.W., Zhang, X.: Gamma-ray spectroscopy of positron annihilation in the Milky Way. 586, 84 (2016). https://doi.org/10.1051/0004-6361/201527510. arXiv:1512.00325

    Article  CAS  Google Scholar 

  21. Fuller, G.M., Kusenko, A., Radice, D., Takhistov, V.: Positrons and 511 keV Radiation as Tracers of Recent Binary Neutron Star Mergers. 122(12), 121101 (2019). https://doi.org/10.1103/PhysRevLett.122.121101. arXiv:1811.00133

  22. Prantzos, N., Boehm, C., Bykov, A.M., Diehl, R., Ferrière, K., Guessoum, N., Jean, P., Knoedlseder, J., Marcowith, A., Moskalenko, I.V., Strong, A., Weidenspointner, G.: The 511 keV emission from positron annihilation in the Galaxy. Rev. Mod. Phys. 83(3), 1001–1056 (2011). https://doi.org/10.1103/RevModPhys.83.1001. arXiv:1009.4620

    Article  ADS  CAS  Google Scholar 

  23. Totani, T.: A RIAF Interpretation for the Past Higher Activity of the Galactic Center Black Hole and the 511 keV Annihilation Emission. 58, 965–977 (2006). https://doi.org/10.1093/pasj/58.6.965. arXiv:astro-ph/0607414

  24. Alexis, A., Jean, P., Martin, P., Ferrière, K.: Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy. 564, 108 (2014). https://doi.org/10.1051/0004-6361/201322393. arXiv:1402.6110

    Article  CAS  Google Scholar 

  25. Bartels, R., Calore, F., Storm, E., Weniger, C.: Galactic binaries can explain the Fermi Galactic centre excess and 511 keV emission. 480(3), 3826–3841 (2018). https://doi.org/10.1093/mnras/sty2135. arXiv:1803.04370

  26. Pospelov, M., Ritz, A.: The galactic 511 keV line from electroweak scale WIMPs. Phys. Lett. B 651(2–3), 208–215 (2007). https://doi.org/10.1016/j.physletb.2007.06.027. arXiv:hep-ph/0703128

    Article  ADS  CAS  Google Scholar 

  27. Hooper, D., Zurek, K.M.: Natural supersymmetric model with MeV dark matter. 77(8), 087302 (2008). https://doi.org/10.1103/PhysRevD.77.087302. arXiv:0801.3686

  28. Khalil, S., Seto, O.: Sterile neutrino dark matter in B-L extension of the standard model and galactic 511 keV line. 2008(10), 024 (2008). https://doi.org/10.1088/1475-7516/2008/10/024. arXiv:0804.0336

  29. Keith, C., Hooper, D.: 511 keV excess and primordial black holes. 104(6), 063033 (2021). https://doi.org/10.1103/PhysRevD.104.063033. arXiv:2103.08611

  30. Cai, R.-G., Ding, Y.-C., Yang, X.-Y., Zhou, Y.-F.: Constraints on a mixed model of dark matter particles and primordial black holes from the galactic 511 keV line. 2021(3), 057 (2021). https://doi.org/10.1088/1475-7516/2021/03/057. arXiv:2007.11804

  31. Siegert, T., Diehl, R., Vincent, A.C., Guglielmetti, F., Krause, M.G.H., Boehm, C.: Search for 511 keV emission in satellite galaxies of the Milky Way with INTEGRAL/SPI. 595, 25 (2016). https://doi.org/10.1051/0004-6361/201629136. arXiv:1608.00393

  32. Margon, B., Ford, H.C., Katz, J.I., Kwitter, K.B., Ulrich, R.K., Stone, R.P.S., Klemola, A.: The bizarre spectrum of SS 433(230), 41–45 (1979). https://doi.org/10.1086/182958

    Article  Google Scholar 

  33. Liu, J.-F., Bai, Y., Wang, S., Justham, S., Lu, Y.-J., Gu, W.-M., Liu, Q.-Z., di Stefano, R., Guo, J.-C., Cabrera-Lavers, A., Álvarez, P., Cao, Y., Kulkarni, S.: Relativistic baryonic jets from an ultraluminous supersoft X-ray source. 528(7580), 108–110 (2015). https://doi.org/10.1038/nature15751. arXiv:1511.09200

  34. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984). https://doi.org/10.1103/RevModPhys.56.255

    Article  ADS  Google Scholar 

  35. Reynolds, C.S., Fabian, A.C., Celotti, A., Rees, M.J.: The matter content of the jet in M87: evidence for an electron-positron jet. 283(3), 873–880 (1996). https://doi.org/10.1093/mnras/283.3.873. arXiv:astro-ph/9603140

  36. Marscher, A.P., Jorstad, S.G., Gómez, J.L., McHardy, I.M., Krichbaum, T.P., Agudo, I.: Search for Electron-Positron Annihilation Radiation from the Jet in 3C 120. 665(1), 232–236 (2007). https://doi.org/10.1086/519481

  37. Zhang, S., Collmar, W., Torres, D.F., Wang, J.-M., Lang, M., Zhang, S.-N.: INTEGRAL and Swift/XRT observations of the source PKS 0208-512. 514, 69 (2010). https://doi.org/10.1051/0004-6361/200913655. arXiv:1002.4030

  38. Siegert, T., Diehl, R., Greiner, J., Krause, M.G.H., Beloborodov, A.M., Bel, M.C., Guglielmetti, F., Rodriguez, J., Strong, A.W., Zhang, X.: Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni. 531(7594), 341–343 (2016). https://doi.org/10.1038/nature16978. arXiv:1603.01169

  39. Roques, J.P., Jourdain, E.: High Energy Emission of V404 Cygni during 2015 outburst with INTEGRAL/SPI: Spectral analysis issues and solutions. arXiv e-prints, 1601–05289 (2016). https://doi.org/10.48550/arXiv.1601.05289. arXiv:1601.05289

  40. Edvige Ravasio, M., Sharan Salafia, O., Oganesyan, G., Mei, A., Ghirlanda, G., Ascenzi, S., Banerjee, B., Macera, S., Branchesi, M., Jonker, P.G., Levan, A.J., Malesani, D.B., Mulrey, K.B., Giuliani, A., Celotti, A., Ghisellini, G.: A bright megaelectronvolt emission line in \(\gamma \)-ray burst GRB 221009A. arXiv e-prints, 2303–16223 (2023) https://doi.org/10.48550/arXiv.2303.16223. arXiv:2303.16223

  41. Reina, C., Treves, A., Tarenghi, M.: Gamma-ray Lines from Accreting Neutron Stars. 32, 317 (1974)

    CAS  Google Scholar 

  42. Brecher, K., Burrows, A.: Gamma-ray lines from accreting neutron stars. 240, 642–647 (1980). https://doi.org/10.1086/158270

    Article  CAS  Google Scholar 

  43. Agaronian, F.A., Sunyaev, R.A.: Gamma-ray line emission, nuclear destruction and neutron production in hot astrophysical plasmas.The deuterium boiler as a gamma-ray source. 210, 257–277 (1984). https://doi.org/10.1093/mnras/210.2.257

  44. Bildsten, L., Salpeter, E.E., Wasserman, I.: Helium Destruction and Gamma-Ray Line Emission in Accreting Neutron Stars. 408, 615 (1993). https://doi.org/10.1086/172621

    Article  CAS  Google Scholar 

  45. Jean, P., Guessoum, N.: Neutron-capture and 2.22 MeV emission in the atmosphere of the secondary of an X-ray binary. 378, 509–521 (2001). https://doi.org/10.1051/0004-6361:20011201. arXiv:astro-ph/0109185

  46. Guessoum, N., Jean, P.: Detectability and characteristics of the 2.223 MeV line emission from nearby X-ray binaries. 396, 157–169 (2002). https://doi.org/10.1051/0004-6361:20021376

  47. Boggs, S.E., Smith, D.M.: Search for Neutron-Capture Gamma-Ray Lines from A0535+26 in Outburst. 637(2), 121–124 (2006). https://doi.org/10.1086/500690

  48. Çalişkan, Ş., Kalemci, E., Baring, M.G., Boggs, S.E., Kretschmar, P.: Search for a Redshifted 2.2 MeV Neutron Capture Line from A0535+262 in Outburst. 694(1), 593–598 (2009). https://doi.org/10.1088/0004-637X/694/1/593. arXiv:0812.2742

  49. Jacobsen, B., Yin, Q.-Z., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon, I.D., Palme, H.: \(^{26}\)Al- \(^{26}\)Mg and \(^{207}\)Pb- \(^{206}\)Pb systematics of Allende CAIs: Canonical solar initial \(^{26}\)Al/ \(^{27}\)Al ratio reinstated. Earth Planet. Sci. Lett. 272(1–2), 353–364 (2008). https://doi.org/10.1016/j.epsl.2008.05.003

    Article  ADS  CAS  Google Scholar 

  50. Turner, N.J., Drake, J.F.: Energetic Protons. Radionuclides, and Magnetic Activity in Protostellar Disks. 703(2), 2152–2159 (2009). https://doi.org/10.1088/0004-637X/703/2/2152. arXiv:0908.3874

    Article  CAS  Google Scholar 

  51. Lee, T., Papanastassiou, D.A., Wasserburg, G.J.: The Presence of \(^{26}\)Al in the Early Solar Nebula. In: Bulletin of the American Astronomical Society, vol. 8, p. 457 (1976)

  52. Gounelle, M., Meibom, A.: The Origin of Short-lived Radionuclides and the Astrophysical Environment of Solar System Formation. 680(1), 781–792 (2008). https://doi.org/10.1086/587613. arXiv:0805.0569

  53. Gaidos, E., Krot, A.N., Williams, J.P., Raymond, S.N.: \(^{26}\)Al and the Formation of the Solar System from a Molecular Cloud Contaminated by Wolf-Rayet Winds. 696(2), 1854–1863 (2009). https://doi.org/10.1088/0004-637X/696/2/1854. arXiv:0901.3364

  54. Gritschneder, M., Lin, D.N.C., Murray, S.D., Yin, Q.-Z., Gong, M.-N.: The Supernova Triggered Formation and Enrichment of Our Solar System. 745(1), 22 (2012). https://doi.org/10.1088/0004-637X/745/1/22. arXiv:1111.0012

  55. Diehl, R., Lang, M.G., Martin, P., Ohlendorf, H., Preibisch, T., Voss, R., Jean, P., Roques, J.-P., von Ballmoos, P., Wang, W.: Radioactive \(^{26}\)Al from the Scorpius-Centaurus association. 522, 51 (2010). https://doi.org/10.1051/0004-6361/201014302. arXiv:1007.4462

  56. Reiter, M.: Observational constraints on the likelihood of \(^{26}\)Al in planet-forming environments. 644, 1 (2020). https://doi.org/10.1051/0004-6361/202039334. arXiv:2011.09971

  57. Forbes, J.C., Alves, J., Lin, D.N.C.: A Solar System formation analogue in the Ophiuchus star-forming complex. Nature Astronomy. 5, 1009–1016 (2021). https://doi.org/10.1038/s41550-021-01442-9. arXiv:2108.09326

  58. Zdziarski, A.A., Pjanka, P., Sikora, M., Stawarz, Ł.: Jet contributions to the broad-band spectrum of Cyg X-1 in the hard state. 442(4), 3243–3255 (2014). https://doi.org/10.1093/mnras/stu1009. arXiv:1403.4768

  59. Vadawale, S.V., Chattopadhyay, T., Mithun, N.P.S., Rao, A.R., Bhattacharya, D., Vibhute, A., Bhalerao, V.B., Dewangan, G.C., Misra, R., Paul, B., Basu, A., Joshi, B.C., Sreekumar, S., Samuel, E., Priya, P., Vinod, P., Seetha, S.: Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nature Astronomy. 2, 50–55 (2018). https://doi.org/10.1038/s41550-017-0293-z

    Article  ADS  Google Scholar 

  60. Chauvin, M., Florén, H.-G., Friis, M., Jackson, M., Kamae, T., Kataoka, J., Kawano, T., Kiss, M., Mikhalev, V., Mizuno, T., Tajima, H., Takahashi, H., Uchida, N., Pearce, M.: The PoGO+ view on Crab off-pulse hard X-ray polarization. 477(1), 45–49 (2018). https://doi.org/10.1093/mnrasl/sly027. arXiv:1802.07775

  61. Chattopadhyay, T., Kumar, A., Rao, A.R., Bhargava, Y., Vadawale, S.V., Ratheesh, A., Dewangan, G., Bhattacharyay, D., Mithun N. P., S., Bhalerao, V.: High hard X-ray polarization in Cygnus X-1 confined to the intermediate hard state: evidence for a variable jet component. arXiv e-prints, 2306–04057 (2023). https://doi.org/10.48550/arXiv.2306.04057. arXiv:2306.04057

  62. Laurent, P., Gouiffes, C., Rodriguez, J., Chambouleyron, V.: INTEGRAL/IBIS observations of V404 Cygni polarimetric properties during its 2015 giant flares. In: 11th INTEGRAL Conference Gamma-Ray Astrophysics in Multi-Wavelength Perspective, p. 22 (2016). https://doi.org/10.22323/1.285.0022

  63. Chattopadhyay, T., Gupta, S., Iyyani, S., Saraogi, D., Sharma, V., Tsvetkova, A., Ratheesh, A., Gupta, R., Mithun, N.P.S., Vaishnava, C.S., Prasad, V., Aarthy, E., Kumar, A., Rao, A.R., Vadawale, S., Bhalerao, V., Bhattacharya, D., Vibhute, A., Frederiks, D.: Hard X-Ray Polarization Catalog for a Five-year Sample of Gamma-Ray Bursts Using AstroSat CZT Imager. 936(1), 12 (2022). https://doi.org/10.3847/1538-4357/ac82ef. arXiv:2207.09605

  64. Takata, J., Chang, H.-K.: Pulse Profiles. Spectra, and Polarization Characteristics of Nonthermal Emissions from the Crab-like Pulsars. 670(1), 677–692 (2007). https://doi.org/10.1086/521785. arXiv:0707.3301

    Article  CAS  Google Scholar 

  65. Pétri, J.: Phase-resolved polarization properties of the pulsar striped wind synchrotron emission. 434(3), 2636–2644 (2013). https://doi.org/10.1093/mnras/stt1214. arXiv:1308.0973

  66. Harding, A.K., Kalapotharakos, C.: Multiwavelength Polarization of Rotation-powered Pulsars. 840(2), 73 (2017). https://doi.org/10.3847/1538-4357/aa6ead. arXiv:1704.06183

  67. Barrett, H.H., Eskin, J.D., Barber, H.B.: Charge Transport in Arrays of Semiconductor Gamma-Ray Detectors. 75(1), 156–159 (1995). https://doi.org/10.1103/PhysRevLett.75.156

  68. He, Z., Knoll, G.F., Wehe, D.K., Rojeski, R., Mastrangelo, C.H., Hammig, M., Barrett, C., Uritani, A.: 1-D position sensitive single carrier semiconductor detectors. Nucl. Inst. Methods Phys. Res. A 380(1–2), 228–231 (1996). https://doi.org/10.1016/S0168-9002(96)00352-X

    Article  ADS  Google Scholar 

  69. He, Z., Knoll, G.F., Wehe, D.K., Miyamoto, J.: Position-sensitive single carrier CdZnTe detectors. Nucl. Inst. Methods Phys. Res. A 388(1–2), 180–185 (1997). https://doi.org/10.1016/S0168-9002(97)00318-5

    Article  ADS  CAS  Google Scholar 

  70. He, Z., Li, W., Knoll, G.F., Wehe, D.K., Berry, J., Stahle, C.M.: 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl. Inst. Methods Phys. Res. A 422(1–3), 173–178 (1999). https://doi.org/10.1016/S0168-9002(98)00950-4

    Article  ADS  CAS  Google Scholar 

  71. Du, Y.F., He, Z., Knoll, G.F., Wehe, D.K., Li, W.: Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl. Inst. Methods Phys. Res. A 457(1–2), 203–211 (2001). https://doi.org/10.1016/S0168-9002(00)00669-0

    Article  ADS  CAS  Google Scholar 

  72. Zhang, F., He, Z.: New Readout Electronics for 3-D Position Sensitive CdZnTe/HgI_2Detector Arrays. IEEE Trans. Nucl. Sci. 53(5), 3021–3027 (2006). https://doi.org/10.1109/TNS.2006.879761

    Article  ADS  CAS  Google Scholar 

  73. Zhang, F., He, Z., Seifert, C.E.: A Prototype Three-Dimensional Position Sensitive CdZnTe Detector Array. IEEE Trans. Nucl. Sci. 54(4), 843–848 (2007). https://doi.org/10.1109/TNS.2007.902354

    Article  ADS  Google Scholar 

  74. Kim, J.C., Kaye, W.R., Wang, W., Zhang, F., He, Z.: Impact of drift time variation on the Compton image from large-volume CdZnTe crystals. Nucl. Inst. Methods Phys. Res. A 683, 53–62 (2012). https://doi.org/10.1016/j.nima.2012.04.057

    Article  ADS  CAS  Google Scholar 

  75. Yang, J., Li, Y.L., Tian, Y., Fu, Y.D., Xu, L., Cai, Y.M., Li, Y.J.: Performance optimization of pixelated CdZnTe detector readout by analog ASIC using cathode waveform. J. Instrum. 15(4), 04005 (2020). https://doi.org/10.1088/1748-0221/15/04/P04005

    Article  Google Scholar 

  76. Liu, Y.-L., Fu, J.-Q., Li, Y.-L., Li, Y.-J., Ma, X.-M., Zhang, L.: Preliminary results of a compton camera based on a single 3d position-sensitive czt detector. Nucl. Sci. Tech. 29(10), 145 (2018). https://doi.org/10.1007/s41365-018-0483-0

    Article  CAS  Google Scholar 

  77. Tomsick, J., Boggs, S., Zoglauer, A., Hartmann, D.H., Ajello, M., Burns, E., Fryer, C., Karwin, C., Kierans, C., Lowell, A., Malzac, J., Roberts, J., Saint-Hilaire, P., Shih, A., Siegert, T., Sleator, C., Takahashi, T., Tavecchio, F., Wulf, E., Beechert, J., Gulick, H., Joens, A., Lazar, H., Neights, E., Martinez Oliveros, J.C., Matsumoto, S., Melia, T., Yoneda, H., Amman, M., Bal, D., von Ballmoos, P., Bates, H., Bottcher, M., Bulgarelli, A., Cavazzuti, E., Chang, H.-K., Chen, C., Chu, C.-Y., Ciabattoni, A., Costamante, L., Dreyer, L., Fioretti, V., Fenu, F., Gal- lego, S., Ghirlanda, G., Grove, E., Huang, C.-Y., Jean, P., Khatiya, N., Knodlseder, J., Kraus, M., Leising, M., Lewis, T., Lommler, J., Marcotulli, L., Martinez Castellanos, I., Mittal, S., Negro, M., Al Nussirat, S., Nakazawa, K., Oberlack, U., Palmore, D., Panebianco, G., Parmiggiani, N., Pike, S., Rogers, F., Schutte, H., Sheng, Y., Smale, A., Smith, J.R., Trigg, A., Venters, T., Watanabe, Y., Zhang, H.: The Compton Spectrometer and Imager. In: Proceedings of 38th International Cosmic Ray Conference – PoS(ICRC2023), vol. 444, p. 745 (2023). https://doi.org/10.22323/1.444.0745

  78. Feng, H., Jiang, W., Minuti, M., Wu, Q., Jung, A., Yang, D., Citraro, S., Nasimi, H., Yu, J., Jin, G., Huang, J., Zeng, M., An, P., Baldini, L., Bellazzini, R., Brez, A., Latronico, L., Sgrò, C., Spandre, G., Pinchera, M., Muleri, F., Soffitta, P., Costa, E.: PolarLight: a CubeSat X-ray polarimeter based on the gas pixel detector. Experimental Astronomy. 47(1-2), 225–243 (2019). https://doi.org/10.1007/s10686-019-09625-z. arXiv:1903.01619

  79. Wen, J., Long, X., Zheng, X., An, Y., Cai, Z., Cang, J., Che, Y., Chen, C., Chen, L., Chen, Q., Chen, Z., Cheng, Y., Deng, L., Deng, W., Ding, W., Du, H., Duan, L., Gan, Q., Gao, T., Gao, Z., Han, W., Han, Y., He, X., He, X., Hou, L., Hu, F., Hu, J., Huang, B., Huang, D., Huang, X., Jia, S., Jiang, Y., Jin, Y., Li, K., Li, S., Li, Y., Liang, J., Liang, Y., Lin, W., Liu, C., Liu, G., Liu, M., Liu, R., Liu, T., Liu, W., Lu, D., Lu, P., Lu, Z., Luo, X., Ma, S., Ma, Y., Mao, X., Mo, Y., Nie, Q., Qu, S., Shan, X., Shi, G., Song, W., Sun, Z., Tan, X., Tang, S., Tao, M., Wang, B., Wang, Y., Wang, Z., Wu, Q., Wu, X., Xia, Y., Xiao, H., Xie, W., Xu, D., Xu, R., Xu, W., Yan, L., Yan, S., Yang, D., Yang, H., Yang, H., Yang, Y.-S., Yang, Y., Yao, L., Yu, H., Yu, Y., Zhang, A., Zhang, B., Zhang, L., Zhang, M., Zhang, S., Zhang, T., Zhang, Y., Zhao, Q., Zhao, R., Zheng, S., Zhou, X., Zhu, R., Zou, Y., An, P., Cai, Y., Chen, H., Dai, Z., Fan, Y., Feng, C., Feng, H., Gao, H., Huang, L., Kang, M., Li, L., Li, Z., Liang, E., Lin, L., Lin, Q., Liu, C., Liu, H., Liu, X., Liu, Y., Lu, X., Mao, S., Shen, R., Shu, J., Su, M., Sun, H., Tam, P.-H., Tang, C.-P., Tian, Y., Wang, F., Wang, J., Wang, W., Wang, Z., Wu, J., Wu, X., Xiong, S., Xu, C., Yu, J., Yu, W., Yu, Y., Zeng, M., Zeng, Z., Zhang, B.-B., Zhang, B., Zhao, Z., Zhou, R., Zhu, Z.: GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era. Experimental Astronomy. 48(1), 77–95 (2019). https://doi.org/10.1007/s10686-019-09636-w. arXiv:1907.06842

  80. Wen, J.-X., Zheng, X.-T., Yu, J.-D., Che, Y.-P., Yang, D.-X., Gao, H.-Z., Jin, Y.-F., Long, X.-Y., Liu, Y.-H., Xu, D.-C., Zhang, Y.-C., Zeng, M., Tian, Y., Feng, H., Zeng, Z., Cang, J.-R., Wu, Q., Zhao, Z.-Q., Zhang, B.-B., An, P., collaboration, G.: Compact cubesat gamma-ray detector for grid mission. Nuclear Science and Techniques. 32(9), 99 (2021). https://doi.org/10.1007/s41365-021-00937-4

  81. Beechert, J., Lazar, H., Boggs, S.E., Brandt, T.J., Chang, Y.-C., Chu, C.-Y., Gulick, H., Kierans, C., Lowell, A., Pellegrini, N., Roberts, J.M., Siegert, T., Sleator, C., Tomsick, J.A., Zoglauer, A.: Calibrations of the Compton Spectrometer and Imager. Nuclear Instruments and Methods in Physics Research A. 1031, 166510 (2022). https://doi.org/10.1016/j.nima.2022.166510. arXiv:2203.00695

  82. Yoneda, H., Odaka, H., Ichinohe, Y., Takashima, S., Aramaki, T., Aoyama, K., Asaadi, J., Fabris, L., Inoue, Y., Karagiorgi, G., Khangulyan, D., Kimura, M., Leyva, J., Mukherjee, R., Nakasone, T., Perez, K., Sakurai, M., Seligman, W., Tanaka, M., Tsuji, N., Yorita, K., Zeng, J.: Reconstruction of multiple Compton scattering events in MeV gamma-ray Compton telescopes towards GRAMS: The physics-based probabilistic model. Astropart. Phys. 144, 102765 (2023). https://doi.org/10.1016/j.astropartphys.2022.102765

    Article  Google Scholar 

  83. Takashima, S., Odaka, H., Yoneda, H., Ichinohe, Y., Bamba, A., Aramaki, T., Inoue, Y.: Event reconstruction of Compton telescopes using a multi-task neural network. Nuclear Instruments and Methods in Physics Research A. 1038, 166897 (2022). https://doi.org/10.1016/j.nima.2022.166897. arXiv:2205.08082

  84. Gruber, D.E., Matteson, J.L., Peterson, L.E., Jung, G.V.: The Spectrum of Diffuse Cosmic Hard X-Rays Measured with HEAO 1. 520(1), 124–129 (1999). https://doi.org/10.1086/307450. arXiv:astro-ph/9903492

  85. Mizuno, T., Kamae, T., Godfrey, G., Handa, T., Thompson, D.J., Lauben, D., Fukazawa, Y., Ozaki, M.: Cosmic-Ray Background Flux Model Based on a Gamma-Ray Large Area Space Telescope Balloon Flight Engineering Model. 614(2), 1113–1123 (2004). https://doi.org/10.1086/423801arXiv:astro-ph/0406684

  86. Türler, M., Chernyakova, M., Courvoisier, T.J.-L., Lubiński, P., Neronov, A., Produit, N., Walter, R.: INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission. 512, 49 (2010). https://doi.org/10.1051/0004-6361/200913072. arXiv:1001.2110

    Article  CAS  Google Scholar 

  87. Abdo, A.A., Ackermann, M., Ajello, M., Atwood, W.B., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Baughman, B.M., Bechtol, K., Bellazzini, R., Berenji, B., Blandford, R.D., Bloom, E.D., Bonamente, E., Borgland, A.W., Bregeon, J., Brez, A., Brigida, M., Bruel, P., Burnett, T.H., Buson, S., Caliandro, G.A., Cameron, R.A., Caraveo, P.A., Casandjian, J.M., Cavazzuti, E., Cecchi, C., Çelik, Ö., Charles, E., Chekhtman, A., Cheung, C.C., Chiang, J., Ciprini, S., Claus, R., Cohen-Tanugi, J., Cominsky, L.R., Conrad, J., Cutini, S., Dermer, C.D., de Angelis, A., de Palma, F., Digel, S.W., di Bernardo, G., do Couto e Silva, E., Drell, P.S., Drlica-Wagner, A., Dubois, R., Dumora, D., Farnier, C., Favuzzi, C., Fegan, S.J., Focke, W.B., Fortin, P., Frailis, M., Fukazawa, Y., Funk, S., Fusco, P., Gaggero, D., Gargano, F., Gasparrini, D., Gehrels, N., Germani, S., Giebels, B., Giglietto, N., Giommi, P., Giordano, F., Glanzman, T., Godfrey, G., Grenier, I.A., Grondin, M.-H., Grove, J.E., Guillemot, L., Guiriec, S., Gustafsson, M., Hanabata, Y., Harding, A.K., Hayashida, M., Hughes, R.E., Itoh, R., Jackson, M.S., Jóhannesson, G., Johnson, A.S., Johnson, R.P., Johnson, T.J., Johnson, W.N., Kamae, T., Katagiri, H., Kataoka, J., Kawai, N., Kerr, M., Knödlseder, J., Kocian, M.L., Kuehn, F., Kuss, M., Lande, J., Latronico, L., Lemoine-Goumard, M., Longo, F., Loparco, F., Lott, B., Lovellette, M.N., Lubrano, P., Madejski, G.M., Makeev, A., Mazziotta, M.N., McConville, W., McEnery, J.E., Meurer, C., Michelson, P.F., Mitthumsiri, W., Mizuno, T., Moiseev, A.A., Monte, C., Monzani, M.E., Morselli, A., Moskalenko, I.V., Murgia, S., Nolan, P.L., Norris, J.P., Nuss, E., Ohsugi, T., Omodei, N., Orlando, E., Ormes, J.F., Paneque, D., Panetta, J.H., Parent, D., Pelassa, V., Pepe, M., Pesce-Rollins, M., Piron, F., Porter, T.A., Rainò, S., Rando, R., Razzano, M., Reimer, A., Reimer, O., Reposeur, T., Ritz, S., Rochester, L.S., Rodriguez, A.Y., Roth, M., Ryde, F., Sadrozinski, H.F.-W., Sanchez, D., Sander, A., Parkinson, P.M.S., Scargle, J.D., Sellerholm, A., Sgrò, C., Shaw, M.S., Siskind, E.J., Smith, D.A., Smith, P.D., Spandre, G., Spinelli, P., Starck, J.-L., Strickman, M.S., Strong, A.W., Suson, D.J., Tajima, H., Takahashi, H., Takahashi, T., Tanaka, T., Thayer, J.B., Thayer, J.G., Thompson, D.J., Tibaldo, L., Torres, D.F., Tosti, G., Tramacere, A., Uchiyama, Y., Usher, T.L., Vasileiou, V., Vilchez, N., Vitale, V., Waite, A.P., Wang, P., Winer, B.L., Wood, K.S., Ylinen, T., Ziegler, M., Fermi LAT Collaboration: Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data. 104(10), 101101 (2010). https://doi.org/10.1103/PhysRevLett.104.101101. arXiv:1002.3603

  88. Alcaraz, J., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., Azzarello, P., Babucci, E., Baldini, L., Basile, M., Barancourt, D., Barao, F., Barbier, G., Barreira, G., Battiston, R., Becker, R., Becker, U., Bellagamba, L., Béné, P., Berdugo, J., Berges, P., Bertucci, B., Biland, A., Bizzaglia, S., Blasko, S., Boella, G., Boschini, M., Bourquin, M., Brocco, L., Bruni, G., Buenerd, M., Burger, J.D., Burger, W.J., Cai, X.D., Camps, C., Cannarsa, P., Capell, M., Casadei, D., Casaus, J., Castellini, G., Cecchi, C., Chang, Y.H., Chen, H.F., Chen, H.S., Chen, Z.G., Chernoplekov, N.A., Chiueh, T.H., Chuang, Y.L., Cindolo, F., Commichau, V., Contin, A., Crespo, P., Cristinziani, M., da Cunha, J.P., Dai, T.S., Deus, J.D., Dinu, N., Djambazov, L., D’Antone, I., Dong, Z.R., Emonet, P., Engelberg, J., Eppling, F.J., Eronen, T., Esposito, G., Extermann, P., Favier, J., Fiandrini, E., Fisher, P.H., Fluegge, G., Fouque, N., Galaktionov, Y., Gervasi, M., Giusti, P., Grandi, D., Grimm, O., Gu, W.Q., Hangarter, K., Hasan, A., Hermel, V., Hofer, H., Huang, M.A., Hungerford, W., Ionica, M., Ionica, R., Jongmanns, M., Karlamaa, K., Karpinski, W., Kenney, G., Kenny, J., Kim, W., Klimentov, A., Kossakowski, R., Koutsenko, V., Kraeber, M., Laborie, G., Laitinen, T., Lamanna, G., Laurenti, G., Lebedev, A., Lee, S.C., Levi, G., Levtchenko, P., Liu, C.L., Liu, H.T., Lopes, I., Lu, G., Lu, Y.S., Lübelsmeyer, K., Luckey, D., Lustermann, W., Maña, C., Margotti, A., Mayet, F., McNeil, R.R., Meillon, B., Menichelli, M., Mihul, A., Mourao, A., Mujunen, A., Palmonari, F., Papi, A., Park, I.H., Pauluzzi, M., Pauss, F., Perrin, E., Pesci, A., Pevsner, A., Pimenta, M., Plyaskin, V., Pojidaev, V., Postolache, V., Produit, N., Rancoita, P.G., Rapin, D., Raupach, F., Ren, D., Ren, Z., Ribordy, M., Richeux, J.P., Riihonen, E., Ritakari, J., Roeser, U., Roissin, C., Sagdeev, R., Sartorelli, G., Schultz von Dratzig, A., Schwering, G., Scolieri, G., Seo, E.S., Shoutko, V., Shoumilov, E., Siedling, R., Son, D., Song, T., Steuer, M., Sun, G.S., Suter, H., Tang, X.W., Ting, S.C.C., Ting, S.M., Tornikoski, M., Torsti, J., Trümper, J., Ulbricht, J., Urpo, S., Usoskin, I., Valtonen, E., Vandenhirtz, J., Velcea, F., Velikhov, E., Verlaat, B., Vetlitsky, I., Vezzu, F., Vialle, J.P., Viertel, G., Vité, D., Von Gunten, H., Waldmeier Wicki, S., Wallraff, W., Wang, B.C., Wang, J.Z., Wang, Y.H., Wiik, K., Williams, C., Wu, S.X., Xia, P.C., Yan, J.L., Yan, L.G., Yang, C.G., Yang, M., Ye, S.W., Yeh, P., Xu, Z.Z., Zhang, H.Y., Zhang, Z.P., Zhao, D.X., Zhu, G.Y., Zhu, W.Z., Zhuang, H.L., Zichichi, A., Zimmermann, B.: Leptons in near earth orbit. Physics Letters B. 484(1-2), 10–22 (2000). https://doi.org/10.1016/S0370-2693(00)00588-8

  89. Kole, M., Pearce, M., Muñoz Salinas, M.: A model of the cosmic ray induced atmospheric neutron environment. Astropart. Phys. 62, 230–240 (2015). https://doi.org/10.1016/j.astropartphys.2014.10.002. arXiv:1410.1364

    Article  ADS  Google Scholar 

  90. Schoenfelder, V., Aarts, H., Bennett, K., de Boer, H., Clear, J., Collmar, W., Connors, A., Deerenberg, A., Diehl, R., von Dordrecht, A., den Herder, J.W., Hermsen, W., Kippen, M., Kuiper, L., Lichti, G., Lockwood, J., Macri, J., McConnell, M., Morris, D., Much, R., Ryan, J., Simpson, G., Snelling, M., Stacy, G., Steinle, H., Strong, A., Swanenburg, B.N., Taylor, B., de Vries, C., Winkler, C.: Instrument Description and Performance of the Imaging Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory. 86, 657 (1993). https://doi.org/10.1086/191794

    Article  Google Scholar 

  91. Wang, W., Lang, M.G., Diehl, R., Halloin, H., Jean, P., Knödlseder, J., Kretschmer, K., Martin, P., Roques, J.P., Strong, A.W., Winkler, C., Zhang, X.L.: Spectral and intensity variations of Galactic \(^{26}\)Al emission. 496(3), 713–724 (2009). https://doi.org/10.1051/0004-6361/200811175. arXiv:0902.0211

  92. Diehl, R., Siegert, T., Hillebrandt, W., Krause, M., Greiner, J., Maeda, K., Röpke, F.K., Sim, S.A., Wang, W., Zhang, X.: SN2014J gamma rays from the \(^{56}\)Ni decay chain. 574, 72 (2015). https://doi.org/10.1051/0004-6361/201424991. arXiv:1409.5477

  93. Siegert, T., Diehl, R., Krause, M.G.H., Greiner, J.: Revisiting INTEGRAL/SPI observations of \(^{44}\)Ti from Cassiopeia A. 579, 124 (2015). https://doi.org/10.1051/0004-6361/201525877. arXiv:1505.05999

  94. Winkler, C., Courvoisier, T.J.-L., Di Cocco, G., Gehrels, N., Giménez, A., Grebenev, S., Hermsen, W., Mas-Hesse, J.M., Lebrun, F., Lund, N., Palumbo, G.G.C., Paul, J., Roques, J.-P., Schnopper, H., Schönfelder, V., Sunyaev, R., Teegarden, B., Ubertini, P., Vedrenne, G., Dean, A.J.: The INTEGRAL mission. 411, 1–6 (2003). https://doi.org/10.1051/0004-6361:20031288

    Article  CAS  Google Scholar 

  95. Harrison, F.A., Craig, W.W., Christensen, F.E., Hailey, C.J., Zhang, W.W., Boggs, S.E., Stern, D., Cook, W.R., Forster, K., Giommi, P., Grefenstette, B.W., Kim, Y., Kitaguchi, T., Koglin, J.E., Madsen, K.K., Mao, P.H., Miyasaka, H., Mori, K., Perri, M., Pivovaroff, M.J., Puccetti, S., Rana, V.R., Westergaard, N.J., Willis, J., Zoglauer, A., An, H., Bachetti, M., Barrière, N.M., Bellm, E.C., Bhalerao, V., Brejnholt, N.F., Fuerst, F., Liebe, C.C., Markwardt, C.B., Nynka, M., Vogel, J.K., Walton, D.J., Wik, D.R., Alexander, D.M., Cominsky, L.R., Hornschemeier, A.E., Hornstrup, A., Kaspi, V.M., Madejski, G.M., Matt, G., Molendi, S., Smith, D.M., Tomsick, J.A., Ajello, M., Ballantyne, D.R., Baloković, M., Barret, D., Bauer, F.E., Blandford, R.D., Brandt, W.N., Brenneman, L.W., Chiang, J., Chakrabarty, D., Chenevez, J., Comastri, A., Dufour, F., Elvis, M., Fabian, A.C., Farrah, D., Fryer, C.L., Gotthelf, E.V., Grindlay, J.E., Helfand, D.J., Krivonos, R., Meier, D.L., Miller, J.M., Natalucci, L., Ogle, P., Ofek, E.O., Ptak, A., Reynolds, S.P., Rigby, J.R., Tagliaferri, G., Thorsett, S.E., Treister, E., Urry, C.M.: The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission. 770(2), 103 (2013). https://doi.org/10.1088/0004-637X/770/2/103. arXiv:1301.7307

  96. Winkler, C.: The INTEGRAL mission. Exp. Astron. 6(4), 71–76 (1995). https://doi.org/10.1007/BF00419260

    Article  ADS  Google Scholar 

  97. Lebrun, F., Leray, J.P., Lavocat, P., Crétolle, J., Arquès, M., Blondel, C., Bonnin, C., Bouère, A., Cara, C., Chaleil, T., Daly, F., Desages, F., Dzitko, H., Horeau, B., Laurent, P., Limousin, O., Mathy, F., Mauguen, V., Meignier, F., Molinié, F., Poindron, E., Rouger, M., Sauvageon, A., Tourrette, T.: ISGRI: The INTEGRAL Soft Gamma-Ray Imager. 411, 141–148 (2003). https://doi.org/10.1051/0004-6361:20031367. arXiv:astro-ph/0310362

  98. Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., Baldini, L., Ballet, J., Band, D.L., Barbiellini, G., Bartelt, J., Bastieri, D., Baughman, B.M., Bechtol, K., Bédérède, D., Bellardi, F., Bellazzini, R., Berenji, B., Bignami, G.F., Bisello, D., Bissaldi, E., Blandford, R.D., Bloom, E.D., Bogart, J.R., Bonamente, E., Bonnell, J., Borgland, A.W., Bouvier, A., Bregeon, J., Brez, A., Brigida, M., Bruel, P., Burnett, T.H., Busetto, G., Caliandro, G.A., Cameron, R.A., Caraveo, P.A., Carius, S., Carlson, P., Casandjian, J.M., Cavazzuti, E., Ceccanti, M., Cecchi, C., Charles, E., Chekhtman, A., Cheung, C.C., Chiang, J., Chipaux, R., Cillis, A.N., Ciprini, S., Claus, R., Cohen-Tanugi, J., Condamoor, S., Conrad, J., Corbet, R., Corucci, L., Costamante, L., Cutini, S., Davis, D.S., Decotigny, D., DeKlotz, M., Dermer, C.D., de Angelis, A., Digel, S.W., do Couto e Silva, E., Drell, P.S., Dubois, R., Dumora, D., Edmonds, Y., Fabiani, D., Farnier, C., Favuzzi, C., Flath, D.L., Fleury, P., Focke, W.B., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Gehrels, N., Gentit, F.-X., Germani, S., Giebels, B., Giglietto, N., Giommi, P., Giordano, F., Glanzman, T., Godfrey, G., Grenier, I.A., Grondin, M.-H., Grove, J.E., Guillemot, L., Guiriec, S., Haller, G., Harding, A.K., Hart, P.A., Hays, E., Healey, S.E., Hirayama, M., Hjalmarsdotter, L., Horn, R., Hughes, R.E., Jóhannesson, G., Johansson, G., Johnson, A.S., Johnson, R.P., Johnson, T.J., Johnson, W.N., Kamae, T., Katagiri, H., Kataoka, J., Kavelaars, A., Kawai, N., Kelly, H., Kerr, M., Klamra, W., Knödlseder, J., Kocian, M.L., Komin, N., Kuehn, F., Kuss, M., Landriu, D., Latronico, L., Lee, B., Lee, S.-H., Lemoine-Goumard, M., Lionetto, A.M., Longo, F., Loparco, F., Lott, B., Lovellette, M.N., Lubrano, P., Madejski, G.M., Makeev, A., Marangelli, B., Massai, M.M., Mazziotta, M.N., McEnery, J.E., Menon, N., Meurer, C., Michelson, P.F., Minuti, M., Mirizzi, N., Mitthumsiri, W., Mizuno, T., Moiseev, A.A., Monte, C., Monzani, M.E., Moretti, E., Morselli, A., Moskalenko, I.V., Murgia, S., Nakamori, T., Nishino, S., Nolan, P.L., Norris, J.P., Nuss, E., Ohno, M., Ohsugi, T., Omodei, N., Orlando, E., Ormes, J.F., Paccagnella, A., Paneque, D., Panetta, J.H., Parent, D., Pearce, M., Pepe, M., Perazzo, A., Pesce-Rollins, M., Picozza, P., Pieri, L., Pinchera, M., Piron, F., Porter, T.A., Poupard, L., Rainò, S., Rando, R., Rapposelli, E., Razzano, M., Reimer, A., Reimer, O., Reposeur, T., Reyes, L.C., Ritz, S., Rochester, L.S., Rodriguez, A.Y., Romani, R.W., Roth, M., Russell, J.J., Ryde, F., Sabatini, S., Sadrozinski, H.F.-W., Sanchez, D., Sander, A., Sapozhnikov, L., Parkinson, P.M.S., Scargle, J.D., Schalk, T.L., Scolieri, G., Sgrò, C., Share, G.H., Shaw, M., Shimokawabe, T., Shrader, C., Sierpowska-Bartosik, A., Siskind, E.J., Smith, D.A., Smith, P.D., Spandre, G., Spinelli, P., Starck, J.-L., Stephens, T.E., Strickman, M.S., Strong, A.W., Suson, D.J., Tajima, H., Takahashi, H., Takahashi, T., Tanaka, T., Tenze, A., Tether, S., Thayer, J.B., Thayer, J.G., Thompson, D.J., Tibaldo, L., Tibolla, O., Torres, D.F., Tosti, G., Tramacere, A., Turri, M., Usher, T.L., Vilchez, N., Vitale, V., Wang, P., Watters, K., Winer, B.L., Wood, K.S., Ylinen, T., Ziegler, M.: The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. 697(2), 1071–1102 (2009). https://doi.org/10.1088/0004-637X/697/2/1071. arXiv:0902.1089

  99. Thompson, D.J., Bertsch, D.L., Fichtel, C.E., Hartman, R.C., Hofstadter, R., Hughes, E.B., Hunter, S.D., Hughlock, B.W., Kanbach, G., Kniffen, D.A., Lin, Y.C., Mattox, J.R., Mayer-Hasselwander, H.A., von Montigny, C., Nolan, P.L., Nel, H.I., Pinkau, K., Rothermel, H., Schneid, E.J., Sommer, M., Sreekumar, P., Tieger, D., Walker, A.H.: Calibration of the Energetic Gamma-Ray Experiment Telescope (EGRET) for the Compton Gamma-Ray Observatory. 86, 629 (1993). https://doi.org/10.1086/191793

  100. de Jager, O.C., Harding, A.K., Michelson, P.F., Nel, H.I., Nolan, P.L., Sreekumar, P., Thompson, D.J.: Gamma-Ray Observations of the Crab Nebula: A Study of the Synchro-Compton Spectrum. 457, 253 (1996). https://doi.org/10.1086/176726

    Article  Google Scholar 

  101. McConnell, M.L., Ryan, J.M., Collmar, W., Schönfelder, V., Steinle, H., Strong, A.W., Bloemen, H., Hermsen, W., Kuiper, L., Bennett, K., Phlips, B.F., Ling, J.C.: A High-Sensitivity Measurement of the MeV Gamma-Ray Spectrum of Cygnus X-1. 543(2), 928–937 (2000). https://doi.org/10.1086/317128. arXiv:astro-ph/0001484

  102. Abraham, S., Zhu, Y., Nowicki, S., Bloser, P., Berry, J., Sandoval, B., Lanctot, S., Petryk, M., Deming, J., Klimenko, A., He, Z.: Capability demonstration of a 3d cdznte detector on a high-altitude balloon flight. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1054, 168413 (2023). https://doi.org/10.1016/j.nima.2023.168413

  103. Shy, D., Goodman, D., Parsons, R., Streicher, M., Kaye, W., Mitchell, L., He, Z., Phlips, B.: Radiation damage of \(2 \times 2\)\(\times \) 1cm\(^{3}\) pixelated CdZnTe due to high-energy protons. Nuclear Instruments and Methods in Physics Research A. 1056, 168622 (2023). https://doi.org/10.1016/j.nima.2023.168622. arXiv:2308.02858

  104. Kuvvetli, I., Budtz-Jørgensen, C., Korsbech, U., Jensen, H.J.: Radiation damage measurements on CZT drift strip detectors. Nucl. Inst. Methods Phys. Res. A 512(1–2), 98–105 (2003). https://doi.org/10.1016/S0168-9002(03)01881-3

    Article  ADS  CAS  Google Scholar 

  105. Fraboni, B., Cavallini, A., Auricchio, N., Dusi, W., Zanarini, M., Siffert, P.: Recovery of radiation damage in cdte and cdznte detectors. In: IEEE Symposium Conference Record Nuclear Science 2004., vol. 7, pp. 4312–4317 (2004). https://doi.org/10.1109/NSSMIC.2004.1466842

  106. Wang, W., Li, Z.: Hard X-Ray Emission and \(^{44}\)Ti Line Features of the Tycho Supernova Remnant. 789(2), 123 (2014). https://doi.org/10.1088/0004-637X/789/2/123arXiv:1405.6463

  107. Wang, W., Li, Z.: Hard X-Ray Emissions from Cassiopeia A Observed by INTEGRAL. 825(2), 102 (2016). https://doi.org/10.3847/0004-637X/825/2/102. arXiv:1605.00360

  108. Ruderman, M.A., Sutherland, P.G.: Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. 196, 51–72 (1975). https://doi.org/10.1086/153393

  109. Arons, J.: Pair creation above pulsar polar caps - Steady flow in the surface acceleration zone and polar CAP X-ray emission. 248, 1099–1116 (1981). https://doi.org/10.1086/159239

    Article  Google Scholar 

  110. Cheng, K.S., Ho, C., Ruderman, M.: Energetic Radiation from Rapidly Spinning Pulsars. I. Outer Magnetosphere Gaps. 300, 500 (1986). https://doi.org/10.1086/163829

    Article  CAS  Google Scholar 

  111. Harding, A.K., Usov, V.V., Muslimov, A.G.: High-Energy Emission from Millisecond Pulsars. 622(1), 531–543 (2005). https://doi.org/10.1086/427840. arXiv:astro-ph/0411805

  112. Harding, A.K., Lai, D.: Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69(9), 2631–2708 (2006). https://doi.org/10.1088/0034-4885/69/9/R03. arXiv:astro-ph/0606674

    Article  ADS  CAS  Google Scholar 

  113. Kuiper, L., Hermsen, W., Dekker, A.: The Fermi-LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays. 475(1), 1238–1250 (2018). https://doi.org/10.1093/mnras/stx3128. arXiv:1709.00899

  114. Pétri, J.: Effect of geodetic precession on the evolution of pulsar high-energy pulse profiles as derived with the striped-wind model. 574, 51 (2015). https://doi.org/10.1051/0004-6361/201424289. arXiv:1410.7618

    Article  Google Scholar 

  115. Takata, J., Cheng, K.S.: X-Ray/GeV Emissions from Crab-like Pulsars in the LMC. 834(1), 4 (2017). https://doi.org/10.3847/1538-4357/834/1/4. arXiv:1612.00158

  116. Barnard, M., Venter, C., Harding, A.K., Kalapotharakos, C., Johnson, T.J.: Probing the High-energy Gamma-Ray Emission Mechanism in the Vela Pulsar via Phase-resolved Spectral and Energy-dependent Light-curve Modeling. 925(2), 184 (2022). https://doi.org/10.3847/1538-4357/ac2a3d. arXiv:2111.03405

  117. Íñiguez-Pascual, D., Viganò, D., Torres, D.F.: Synchro-curvature emitting regions in high-energy pulsar models. 516(2), 2475–2485 (2022). https://doi.org/10.1093/mnras/stac2275. arXiv:2208.05549

  118. Torres, D.F.: Order parameters for the high-energy spectra of pulsars. Nature Astronomy. 2, 247–256 (2018). https://doi.org/10.1038/s41550-018-0384-5. arXiv:1802.04177

  119. Torres, D.F., Viganò, D., Coti Zelati, F., Li, J.: Synchrocurvature modelling of the multifrequency non-thermal emission of pulsars. 489(4), 5494–5512 (2019). https://doi.org/10.1093/mnras/stz2403. arXiv:1908.11574

  120. Acciari, V.A., Ansoldi, S., Antonelli, L.A., Arbet Engels, A., Artero, M., Asano, K., Baack, D., Babić, A., Baquero, A., Barres de Almeida, U., Barrio, J.A., Batković, I., Becerra González, J., Bednarek, W., Bellizzi, L., Bernardini, E., Bernardos, M., Berti, A., Besenrieder, J., Bhattacharyya, W., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Busetto, G., Carosi, R., Ceribella, G., Cerruti, M., Chai, Y., Chilingarian, A., Cikota, S., Colak, S.M., Colombo, E., Contreras, J.L., Cortina, J., Covino, S., D’Amico, G., D’Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Delfino, M., Delgado, J., Delgado Mendez, C., Depaoli, D., Di Pierro, F., Di Venere, L., Do Souto Espiñeira, E., Dominis Prester, D., Donini, A., Dorner, D., Doro, M., Elsaesser, D., Fallah Ramazani, V., Fattorini, A., Ferrara, G., Fonseca, M.V., Font, L., Fruck, C., Fukami, S., García López, R.J., Garczarczyk, M., Gasparyan, S., Gaug, M., Giglietto, N., Giordano, F., Gliwny, P., Godinović, N., Green, J.G., Green, D., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hoang, J., Hrupec, D., Hütten, M., Inada, T., Inoue, S., Ishio, K., Iwamura, Y., Jiménez, I., Jormanainen, J., Jouvin, L., Kajiwara, Y., Karjalainen, M., Kerszberg, D., Kobayashi, Y., Kubo, H., Kushida, J., Lamastra, A., Lelas, D., Leone, F., Lindfors, E., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Machado de Oliveira Fraga, B., Maggio, C., Majumdar, P., Makariev, M., Mallamaci, M., Maneva, G., Manganaro, M., Mannheim, K., Maraschi, L., Mariotti, M., Martínez, M., Mazin, D., Menchiari, S., Mender, S., Mićanović, S., Miceli, D., Miener, T., Minev, M., Miranda, J.M., Mirzoyan, R., Molina, E., Moralejo, A., Morcuende, D., Moreno, V., Moretti, E., Neustroev, V., Nigro, C., Nilsson, K., Nishijima, K., Noda, K., Nozaki, S., Ohtani, Y., Oka, T., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J.M., Pavletić, L., Peñil, P., Perennes, C., Persic, M., Prada Moroni, P.G., Prandini, E., Priyadarshi, C., Puljak, I., Rhode, W., Ribó, M., Rico, J., Righi, C., Rugliancich, A., Saha, L., Sahakyan, N., Saito, T., Sakurai, S., Satalecka, K., Saturni, F.G., Schleicher, B., Schmidt, K., Schweizer, T., Sitarek, J., Šnidarić, I., Sobczynska, D., Spolon, A., Stamerra, A., Strom, D., Strzys, M., Suda, Y., Surić, T., Takahashi, M., Tavecchio, F., Temnikov, P., Terzić, T., Teshima, M., Tosti, L., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Vanzo, G., Vazquez Acosta, M., Ventura, S., Verguilov, V., Vigorito, C.F., Vitale, V., Vovk, I., Will, M., Wunderlich, C., Zarić, D., Zarić, D., Caraveo, P.A., Cognard, I., Guillemot, L., Harding, A.K., Li, J., Limyansky, B., Ng, C.Y., Torres, D.F., Saz Parkinson, P.M.: Search for Very High-energy Emission from the Millisecond Pulsar PSR J0218+4232. 922(2), 251 (2021). https://doi.org/10.3847/1538-4357/ac20d7. arXiv:2108.11373

  121. Kuiper, L., Hermsen, W.: The soft \(\gamma \)-ray pulsar population: a high-energy overview. 449(4), 3827–3866 (2015). https://doi.org/10.1093/mnras/stv426. arXiv:1502.06769

  122. Coti Zelati, F., Torres, D.F., Li, J., Viganò, D.: Spectral characterization of the non-thermal X-ray emission of gamma-ray pulsars. 492(1), 1025–1043 (2020). https://doi.org/10.1093/mnras/stz3485. arXiv:1912.03953

  123. Hare, J., Volkov, I., Pavlov, G.G., Kargaltsev, O., Johnston, S.: Precise Timing and Phase-resolved Spectroscopy of the Young Pulsar J1617-5055 with NuSTAR. 923(2), 249 (2021). https://doi.org/10.3847/1538-4357/ac30e2. arXiv:2110.08077

  124. Zhang, H., Böttcher, M.: X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars. 774(1), 18 (2013). https://doi.org/10.1088/0004-637X/774/1/18. arXiv:1307.4187

  125. Petropoulou, M., Dimitrakoudis, S., Padovani, P., Mastichiadis, A., Resconi, E.: Photohadronic origin of \(\gamma \) -ray BL Lac emission: implications for IceCube neutrinos. 448(3), 2412–2429 (2015). https://doi.org/10.1093/mnras/stv179. arXiv:1501.07115

  126. Baldi, R.D., Torresi, E., Migliori, G., Balmaverde, B.: The High Energy View of FR0 Radio Galaxies. Galaxies. 7(3), 76 (2019). https://doi.org/10.3390/galaxies7030076. arXiv:1909.04113

Download references

Acknowledgements

HF acknowledges funding support from the National Natural Science Foundation of China under grants Nos. 12025301, 12103027, & 11821303, the National Key R &D Project under grant 2018YFA0404502, and the Tsinghua University Initiative Scientific Research Program.

Funding

This work was supported by the National Natural Science Foundation of China under grants Nos. 12025301, 12103027, & 11821303, the National Key R &D Project under grant 2018YFA0404502, and the Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Contributions

HF and MZ led the project, with a focus on science and instrumentation, respectively. J Zhu, CYH, JYH, HKC, and HL performed the simulations. XZ, HC, XP, GM, QW, and YL contributed to the development of the payload instrument. XB, MG, LJ, JL, YS, WW, XW, BZ, and J Zhang participated in the discussions of the science objectives.

Corresponding author

Correspondence to Hua Feng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zheng, X., Feng, H. et al. MeV astrophysical spectroscopic surveyor (MASS): a compton telescope mission concept. Exp Astron 57, 2 (2024). https://doi.org/10.1007/s10686-024-09920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09920-4

Keywords

Navigation