Skip to main content
Log in

Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet ASγ, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdo, A.A., et al.: TeV gamma-ray sources from a survey of the Galactic Plane with Milagro. ApJ 664, L91 (2007)

    Article  ADS  Google Scholar 

  2. Abdo, A.A., et al.: Discovery of localized regions of excess 10-TeV cosmic rays. Phys. Rev. Lett 101, 221101 (2008)

    Article  ADS  Google Scholar 

  3. Abeysekara, A., et al.: Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911 (2017)

    Article  ADS  Google Scholar 

  4. Amenomori, M., et al.: First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source. Phys. Rev. Lett. 123, 05113 (2019)

    Article  Google Scholar 

  5. Aharonian, F., et al.: Observation of the Crab Nebula with LHAASO-KM2A - a performance study. Chinese Phys. C 45, 025002 (2021)

    Article  ADS  Google Scholar 

  6. Amenomori, M., et al.: Potential PeVatron supernova remnant G106.3 + 2.7 seen in the highest-energy gamma rays. Nat. Astron. 5, 460 (2021)

    Article  ADS  Google Scholar 

  7. Amenomori, M., et al.: First detection of sub-PeV diffuse gamma rays from the galactic disk: evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies. Phys. Rev. Lett. 126, 141101 (2021)

    Article  ADS  Google Scholar 

  8. Hampel-Arias, Z., Westerhoffa, S.: Gamma Hadron Separation using Pairwise Compactness Method with HAWC for the HAWC Collaboration, PoS(ICRC2015)1001 (2015)

  9. Bartoli, B., et al.: Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Phys. Rev. D 84, 022003 (2011)

    Article  ADS  Google Scholar 

  10. Sciascio, G.D., Rossi, E.: Measurement of the angular resolution of the ARGO-YBJ detector. Proc. 30th Int. Cosmic Ray Conf. 4, 123 (2008)

    Google Scholar 

  11. Sinnis, G., New, J.: Air shower detectors in gamma-ray astronomy. Phys. 11, 055007 (2009)

    Google Scholar 

  12. Amenomori, M., et al.: Multi-TeV gamma-ray observation from the Crab Nebula using the Tibet-III air shower array finely tuned by the Cosmic ray Moon’s Shadow. ApJ 692, 61 (2009)

    Article  ADS  Google Scholar 

  13. Amenomori, M., et al.: Observation of TeV Gamma rays from the Fermi Bright Galactic Sources with the Tibet Air shower Array. ApJ Lett. 709, L6 (2010)

    Article  ADS  Google Scholar 

  14. Sako, T.K., et al.: Exploration of a 100 TeV gamma-ray northern sky using the Tibet air-shower array combined with an underground water-Cherenkov muon-detector array. Astroparticle Phys. 32, 177 (2009)

    Article  ADS  Google Scholar 

  15. Amenomori, M., et al.: Search for Gamma rays above 100 TeV from the Crab Nebula with the Tibet Air shower Array and the 100 m2 Muon Detector. ApJ 813, 98 (2015)

    Article  ADS  Google Scholar 

  16. Calle, C., et al.: Expected performance of the prototype experiment for the ALPACA experiment. PoS(ICRC2019) 711 (2019)

  17. Calle, C., et al.: ALPACA air shower array to explore 100 TeV gamma-ray sky in Bolivia. PoS(ICRC2019) 779 (2019)

  18. Kato, S., et al.: Detectability of southern gamma-ray sources beyond 100 TeV with ALPAQUITA, the prototype experiment of ALPACA. Exp. Astron. 52, 85 (2021)

    Article  ADS  Google Scholar 

  19. Shibata, M., et al.: Chemical composition and maximum energy of Galactic Cosmic Rays. ApJ 716, 1076 (2010)

    Article  ADS  Google Scholar 

  20. Ostapchenko, S.: QGSJET-II: towards reliable description of very high energy hadronic interactions. Nucl. Phys. B (Proc. Suppl.) 151, 143 (2006)

    Article  ADS  Google Scholar 

  21. Pierog, T., et al.: EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C 92, 034906 (2015)

    Article  ADS  Google Scholar 

  22. Enge, R., et al.: The hadronic interaction model Sibyll 2.3c past, present and future. EPJ Web of Conferences 145, 08001 (2017)

    Article  Google Scholar 

  23. Fedynitch, A., et al.: Hadronic interaction model sibyll 2.3c and inclusive lepton fluxes. Phys. Rev. D 100, 103018 (2019)

    Article  ADS  Google Scholar 

  24. Battistoni, G., et al.: Overview of the FLUKA code. Ann. Nucl. Energy 82, 10 (2015)

    Article  Google Scholar 

  25. Bleicherda, M., et al.: Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G. Nucl. Part. 25, 1859 (1999)

    Article  ADS  Google Scholar 

  26. Heck, D., et al.: CORSIKA: A Monte Carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe Report FZKA 6019 (1998)

  27. Nelson, W.R., et al.: The EGS4 Code System. SLAC Report 265 (1985)

  28. Heck, D.: New Treatment of the Conversion \(\gamma \rightarrow \mu ^{+} + \mu ^{-}\) in CORSIKA. Forschungszentrum Karlsruhe Report FZKA 7525 (2009)

Download references

Acknowledgements

The ALPACA project is supported by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for Scientific Research (A) 19H00678, Scientific Research (B) 19H01922, Scientific Research (B) 20H01920, Scientific Research (S) 20H05640, Scientific Research (B) 20H01234, Scientific Research (C) 22K03660, and Specially Promoted Research 22H04912, the LeoAtrox supercomputer located at the facilities of the Centro de Análisis de Datos (CADS), CGSAIT, Universidad de Guadalajara, México, and by the joint research program of the Institute for Cosmic Ray Research (ICRR), The University of Tokyo. Y. Katayose is also supported by JSPS Open Partnership joint Research projectsF2018, F2019. K. Kawata is supported by the Toray Science Foundation. E. de la Fuente thanks Coordinación General Académica y de Innovación (CGAI-UDG), cuerpo académico PRODEP-UDG-CA-499, Carlos Iván Moreno, Cynthia Ruano, Rosario Cedano, and Diana Naylleli, for financial and administrative support during sabbatical year stay at the ICRR on 2021. I. Toledano-Juarez acknowledges support from CONACyT, México; grant 754851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Okukawa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okukawa, S., Anzorena, M., Asano, S. et al. Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector. Exp Astron 55, 325–342 (2023). https://doi.org/10.1007/s10686-022-09883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-022-09883-4

Keywords

Navigation