Skip to main content

Study of water Cherenkov detector to improve the angular resolution of an air-shower array for ultra-high-energy gamma-ray observation

Abstract

For research on cosmic gamma rays with energies in the range of several tens of teraelectronvolts or more, we investigated a method to improve the angular resolution of an air shower. In an air shower, the density of secondary gamma rays is several times higher than that of electrons and those measurement is important for determining the shower direction. It was found that the angular resolution in the shower front-fit method decreases in inverse proportion to the square root of the number of measured particles. Even if the total number of measured particles is the same, secondary gamma rays contribute more to the improvement of angular resolution than electrons. If secondary gamma rays could be measured at an altitude of 4,740 m with a sensitivity of 100 %, an improvement of approximately 40 % was determined for a 500 TeV shower. A water Cherenkov detector with high gamma-ray sensitivity was investigated through Monte Carlo simulation. Detection efficiencies of approximately 0.38 and 0.76 were obtained for vertically incident gamma rays and electrons, respectively, using 19 8-inch diameter PMTs inside a detector installed in a water tank of radius 4.5 m and water depth 1.6 m. The detection time error for secondary gamma rays is approximately 2.18 ns at an incident angle of 0 and the standard error in the detection time for shower front particles was found to be approximately 10 times lower than that obtained by using a plastic scintillation detector with an area of 1 m2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Amenomori, M., et al.: First detection of photons with energy beyond 100 TeV from an astrophysical source. Phys. Rev. Rett. 123, 051101 (2019). https://doi.org/10.1103/PhysRevLett.123.051101

    ADS  Google Scholar 

  2. Abdo, A. A., et al.: TeV Gamma-ray sources from a survey of the galactic plane with milagro. Astrophys. J. 664, L91 (2007)

    ADS  Article  Google Scholar 

  3. Abdo, A.A., et al.: Discovery of localized regions of excess 10-TeV cosmic rays. Phys. Rev. Rett. 101, 221101 (2008)

    ADS  Google Scholar 

  4. Abeysekara, A.U., et al.: Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911 (2017). https://doi.org/10.1126/science.aan4880

    ADS  Article  Google Scholar 

  5. Cao, Z., et al.: Discovery of the ultrahigh-energy gamma-ray source LHAASO J2108 + 5157. Astrophys. J. Lett. 919, L22 (2021). https://doi.org/10.3847/2041-8213/ac2579

    ADS  Article  Google Scholar 

  6. Abramowski, A., et al.: Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531, 476 (2016). https://www.nature.com/articles/nature17147

    ADS  Article  Google Scholar 

  7. Cao, Z., et al.: Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 594, 33 (2021). https://doi.org/10.1038/s41586-021-03498-z

    ADS  Article  Google Scholar 

  8. Cannady, N., et al.: Characteristics and performance of the CALorimetric electron telescope (CALET) calorimeter for gamma-ray observations. Astrophys. J. Suppl. 238, 5 (2018). https://doi.org/10.3847/1538-4365/aad6a3

    ADS  Article  Google Scholar 

  9. Ambrosi, G., et al.: The on-orbit calibration of DArk matter particle explorer. Astropart.Phys. 106, 18 (2019). https://doi.org/10.1016/j.astropartphys.2018.10.006

    ADS  Article  Google Scholar 

  10. Abdo, A.A., et al.: Fermi large area telescope observations of the crab pulsar and nebula. Astrophys. J. 708, 1254 (2010). https://doi.org/10.1088/0004-637X/708/2/1254

    ADS  Article  Google Scholar 

  11. Weeks, T.C., et al.: Observation of TeV gamma rays from the crab nebula using the atmospheric cerenkov imaging technique. Astrophys. J. 342, 379 (1989)

    ADS  Article  Google Scholar 

  12. Benbow, W.: The Status and Performance of H.E.S.S. AIP Conf. Proc. 745, 611 (2005). https://doi.org/10.1063/1.1878471

    ADS  Article  Google Scholar 

  13. Abramowski, A., et al.: H.E.S.S. observations of the Crab during its March 2013 GeV gamma-ray flare. Astron. Astrophys. 562, L4 (2014). https://doi.org/10.1051/0004-6361/201323013

    ADS  Article  Google Scholar 

  14. Aleksić, J., et al.: Performance of the MAGIC stereo system obtained with Crab Nebula data. Astropart. Phys. 35, 435 (2012)

    ADS  Article  Google Scholar 

  15. Ahnen, M.L., et al.: Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218 + 357 with the MAGIC telescopes. Astron. Astrophys. 595, A98 (2016). https://doi.org/10.1051/0004-6361/201629461

    Article  Google Scholar 

  16. Aliu, E., et al.: Discovery of TeV gamma-ray emission from CTA 1 by Veritas. Astrophys. J. 764, 38 (2013). https://doi.org/10.1088/0004-637X/764/1/38

    ADS  Article  Google Scholar 

  17. Amenomori, M., et al.: Development and performance test of a prototype air shower array F search for gamma ray point sources in the very high energy region. Nucl. Instrum. Methods Phys. Res. A 288, 619 (1990)

    ADS  Article  Google Scholar 

  18. Porier, J., Mikocki, S.: Improving the angular resolution of existing air shower arrays by adding a thin layer of lead. Nucl. Instrum. Methods Phys. Res. A 257, 473 (1987)

    ADS  Article  Google Scholar 

  19. Amenomori, M., et al.: Detection of multi-TeV gamma rays from markarian 501 during an unforeseen flaring state in 1997 with the tibet air shower array. Astrophys. J. 532, 302 (2000)

    ADS  Article  Google Scholar 

  20. Amenomori, M., et al.: Multi-TeV gamma-ray observation from the crab nebula using the tibet-III air shower array finely tuned by the cosmic ray moon’s shadow. Astrophys. J. 692, 61 (2009). https://doi.org/10.1088/0004-637X/692/1/61

    ADS  Article  Google Scholar 

  21. Amenomori, M., et al.: Observation of TeV gamma rays from the fermi bright galactic sources with the tibet air shower array. Astrophys. J. Lett. 709, L6 (2010). https://doi.org/10.1088/2041-8205/709/1/L6

    ADS  Article  Google Scholar 

  22. Bartoli, B., et al.: Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Phys. Rev. D 84, 022003 (2011)

    ADS  Article  Google Scholar 

  23. Sciascio, G.D., Rossi, E.: Measurement of the angular resolution of the ARGO-YBJ detector. Proc. 30th Int. Cosmic Ray Conf. 4, 123 (2008)

    Google Scholar 

  24. Abeysekara, A.U., et al.: VAMOS: A pathfinder for the HAWC gamma-ray observatory. Astropart. Phys. 62, 125 (2015). https://doi.org/10.1016/j.astropartphys.2014.08.004

    ADS  Article  Google Scholar 

  25. Abeysekara, A.U., et al.: Measurement of the crab nebula spectrum past 100 TeV with HAWC. Astrophys. J. 881, 134 (2019). https://doi.org/10.3847/1538-4357/ab2f7d

    ADS  Article  Google Scholar 

  26. Abraham, J., et al.: Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. A 523, 50 (2004)

    ADS  Article  Google Scholar 

  27. Allard, D., et al.: Use of water-Cherenkov detectors to detect gamma ray bursts at the Large Aperture GRB Observatory (LAGO). Nucl. Instrum. Methods Phys. Res. A 595, 70 (2008)

    ADS  Article  Google Scholar 

  28. Calle, C., et al.: ALPACA air shower array to explore 100TeV gamma-ray sky in Bolivia. Proc. 36th Int. Cosmic Ray Conf., PoS ICRC2019 779. https://doi.org/10.22323/1.358.0779 (2019)

  29. Landau, L., Rumer, G.: The cascade theory of electronic showers. Proc. R. Soc. Lond. A 166, 213 (1938)

    ADS  Article  Google Scholar 

  30. Rossi, B., Greisen, K.: Cosmic-ray theory. Rev. Mod. Phys. 13, 240 (1941)

    ADS  Article  Google Scholar 

  31. Nishimura, J., Kamata, K.: On the theory of cascade showers. I. Progr. Theor. Phys. 7(2), 185 (1952)

    ADS  MathSciNet  Article  Google Scholar 

  32. Kamata, K, Nishimura, J.: The lateral and the angular structure functions of electron showers. Progr. Theor. Phys. Suppl. 6, 93 (1958). https://doi.org/10.1143/PTPS.6.93

    ADS  Article  Google Scholar 

  33. Greisen, K.: Cosmic ray showers. Ann. Rev. Nucl. Part. Sci. 10, 63 (1960)

    ADS  Article  Google Scholar 

  34. Oshima, A., et al.: The angular resolution of the GRAPES-3 array from the shadows of the Moon and the Sun. Astropart. Phys. Astropart. Phys. 33, 97 (2010)

    ADS  Article  Google Scholar 

  35. Bergamasco, L., et al.: Multicomponent extensive air shower observations at EAS-TOP. Nucl. Phys. B (Proc. Suppl.) 54B, 263 (1997)

    ADS  Google Scholar 

  36. Borione, A., et al.: Constraints on gamma-ray emission from the galactic plane at 300 TeV. Astrophys. J. 493, 175 (1998)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP15K05108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shiomi.

Ethics declarations

Conflict of Interests

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakada, H., Shiomi, A., Ohnishi, M. et al. Study of water Cherenkov detector to improve the angular resolution of an air-shower array for ultra-high-energy gamma-ray observation. Exp Astron (2022). https://doi.org/10.1007/s10686-022-09855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-022-09855-8

Keywords

  • 100 TeV gamma ray
  • Air shower
  • Water Cherenkov detector