Skip to main content

Beryllium abundances in turn-off stars of globular clusters with the CUBES spectrograph

Abstract

Globular clusters host multiple stellar populations that display star-to-star variation of light elements that are affected by hot hydrogen burning (e.g., He, C, N, O). Several scenarios have been suggested to explain these variations. Most involve multiple star formation episodes, where later generations are born from material contaminated by the nucleosynthetic products of the previous stellar generation(s). One difficulty in the modelling of such scenarios is knowing the extent to which processed and pristine material are mixed. In this context, beryllium abundances measured in turn-off stars of different generations can provide new information. Beryllium originates from cosmic-ray spallation and can only be destroyed inside stars. Beryllium abundances can thus directly measure the degree of pollution of the material that formed stars in globular clusters. Turn-off stars in globular clusters are however faint and such studies are beyond the capabilities of current instrumentation. In this work, we show the progress that the CUBES spectrograph will bring to this area. Our simulations indicate that CUBES will enable the detection of variations of about 0.6 dex in the Be abundances between stars from different generations, in several nearby globular clusters with turn-off magnitude down to V = 18 mag.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during the current study are available in the GitHub repository. A merged, re-normalised, re-sampled, and resolution homogenised version of the Kitt Peak Solar Atlas: https://github.com/RGiribaldi/FGKstars. A corrected line list with format compatible with Turbospectrum: https://github.com/RGiribaldi/Master-line-list-for-spectral-synthesis-with-Turbospectrum.

Notes

  1. Available at https://www.lupm.in2p3.fr/users/plez/

  2. Depth of the weakest line with respect to the deepness of the strongest line produced

  3. Molecular line lists from these references already formatted for use with Turbospectrum can be downloaded at https://nextcloud.lupm.in2p3.fr/s/r8pXijD39YLzw5T

  4. https://cubes.inaf.it/end-to-end-simulator

  5. Available at: http://kurucz.harvard.edu/sun/fluxatlas2005/

  6. https://github.com/RGiribaldi/FGKstars

  7. https://github.com/RGiribaldi/Master-line-list-for-spectral-synthesis-with-Turbospectrum

  8. https://web.archive.org/web/20110128035351/http://gclusters.altervista.org/

  9. Computed assuming extinction \(A_V = 3.1 \times E(B-V)\)

References

  1. Cohen, J.G.: Abundances in globular cluster red giants. I. M3 and M13. Astrophys. J. 223, 487 (1978). https://doi.org/10.1086/156284

    ADS  Article  Google Scholar 

  2. Bastian, N., Lardo, C.: Multiple stellar populations in globular clusters. Ann. Rev. Astron. Astrophys. 56, 83 (2018). https://doi.org/10.1146/annurev-astro-081817-051839

    ADS  Article  Google Scholar 

  3. Lee, Y.W., Joo, J.M., Sohn, Y.J., Rey, S.C., Lee, H.C., Walker, A.R.: Multiple stellar populations in the globular cluster ω Centauri as tracers of a merger event. Nature 402(6757), 55 (1999). https://doi.org/10.1038/46985

  4. Cassisi, S., Salaris, M.: Multiple populations in massive star clusters under the magnifying glass of photometry: theory and tools. Astron. Astrophys. Rev. 28(1), 5 (2020). https://doi.org/10.1007/s00159-020-00127-y

    ADS  Article  Google Scholar 

  5. Bedin, L.R., Piotto, G., Anderson, J., Cassisi, S., King, I.R., Momany, Y., Carraro, G.: \({\omega }\) Centauri: The population puzzle goes deeper. Astrophys. J. 605(2), L125 (2004). https://doi.org/10.1086/420847

  6. Piotto, G., Bedin, L.R., Anderson, J., King, I.R., Cassisi, S., Milone, A.P., Villanova, S., Pietrinferni, A., Renzini, A.: A triple main sequence in the globular cluster NGC 2808. Astrophys. J. 661(1), L53 (2007). https://doi.org/10.1086/518503

    ADS  Article  Google Scholar 

  7. Kraft, R.P.: Abundance differences among globular cluster giants: Primordial vs. evolutionary scenarios. PASP 106, 553 (1994). https://doi.org/10.1086/133416

    ADS  Article  Google Scholar 

  8. Gratton, R.G., Lucatello, S., Bragaglia, A., Carretta, E., Cassisi, S., Momany, Y., Pancino, E., Valenti, E., Caloi, V., Claudi, R., D’Antona, F., Desidera, S., François, P., James, G., Moehler, S., Ortolani, S., Pasquini, L., Piotto, G., Recio-Blanco, A.: Na-O anticorrelation and horizontal branches. V. The Na-O anticorrelation in \(<ASTROBJ>\)NGC 6441\(</ASTROBJ>\) from Giraffe spectra,. Astron. Astrophys. 464(3), 953 (2007). https://doi.org/10.1051/0004-6361:20066061

  9. Carretta, E.: Five groups of red giants with distinct chemical composition in the globular cluster NGC 2808. Astrophys. J. 810(2), 148 (2015). https://doi.org/10.1088/0004-637X/810/2/148

    ADS  Article  Google Scholar 

  10. Pancino, E., Romano, D., Tang, B., Tautvaišienė, G., Casey, A.R., Gruyters, P., Geisler, D., San Roman, I., Randich, S., Alfaro, E.J., Bragaglia, A., Flaccomio, E., Korn, A.J., Recio-Blanco, A., Smiljanic, R., Carraro, G., Bayo, A., Costado, M.T., Damiani, F., Jofré, P., Lardo, C., de Laverny, P., Monaco, L., Morbidelli, L., Sbordone, L., Sousa, S.G., Villanova, S.: The Gaia-ESO Survey. Mg-Al anti-correlation in iDR4 globular clusters. Astron. Astrophys. 601, A112 (2017). https://doi.org/10.1051/0004-6361/201730474

    Article  Google Scholar 

  11. Cohen, J.G., Kirby, E.N.: The bizarre chemical inventory of NGC 2419, An extreme outer halo globular cluster. Astrophys. J. 760(1), 86 (2012). https://doi.org/10.1088/0004-637X/760/1/86

    ADS  Article  Google Scholar 

  12. Mészáros, S., Masseron, T., García-Hernández, D.A., Allende Prieto, C., Beers, T.C., Bizyaev, D., Chojnowski, D., Cohen, R.E., Cunha, K., Dell’Agli, F., Ebelke, G., Fernández-Trincado, J.G., Frinchaboy, P., Geisler, D., Hasselquist, S., Hearty, F., Holtzman, J., Johnson, J., Lane, R.R., Lacerna, I. , Longa-Peña, P., Majewski, S.R., Martell, S.L., Minniti, D., Nataf, D., Nidever, D.L., Pan, K., Schiavon, M. Shetrone, R.P., Smith, V.V., Sobeck, J.S., Stringfellow, G.S., Szigeti, L., Tang, B., Wilson, J.C., Zamora, O.: Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code - II. . The Southern clusters and overview. Monthly Notices R. Astron. Soc. 492(2), 1641 (2020). https://doi.org/10.1093/mnras/stz3496

  13. Carretta, E., Bragaglia, A.: Excess of Ca (and Sc) produced in globular cluster multiple populations: a first census in 77 Galactic globular clusters. Astron. Astrophys. 646, A9 (2021). https://doi.org/10.1051/0004-6361/202039392

    ADS  Article  Google Scholar 

  14. Cottrell, P.L., Da Costa, G.S.: Abundance, Cyanogen, Globular Clusters, Sodium, Stellar Evolution, Aluminum, Metallic Stars, Nuclear Fusion, Stellar Mass. Astronomy. Astrophys. J. Lett. 245, L79 (1981). https://doi.org/10.1086/183527

    ADS  Article  Google Scholar 

  15. Ventura, P., D’Antona, F.: Massive AGB models of low metallicity: the implications for the self-enrichment scenario in metal-poor globular clusters. Astron. Astrophys. 499(3), 835 (2009). https://doi.org/10.1051/0004-6361/200811139

    ADS  Article  Google Scholar 

  16. Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., Ekström, S.: Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron. Astrophys. 464(3), 1029 (2007). https://doi.org/10.1051/0004-6361:20066013

    ADS  Article  Google Scholar 

  17. Krause, M., Charbonnel, C., Decressin, T., Meynet, G., Prantzos, N.: Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars. Astron. Astrophys. 552, A121 (2013). https://doi.org/10.1051/0004-6361/201220694

    ADS  Article  Google Scholar 

  18. de Mink, S.E., Pols, O.R., Langer, N., Izzard, R.G.: Massive binaries as the source of abundance anomalies in globular clusters. Astron. Astrophys. 507(1), L1 (2009). https://doi.org/10.1051/0004-6361/200913205

    ADS  Article  Google Scholar 

  19. Gratton, R., Bragaglia, A., Carretta, E., D’Orazi, V., Lucatello, S., Sollima, A.: An observational perspective. What is a globular cluster? Astron. Astrophys. Rev. 27(1), 8 (2019). https://doi.org/10.1007/s00159-019-0119-3

    ADS  Article  Google Scholar 

  20. Bonifacio, P., Pasquini, L., Spite, F., Bragaglia, A., Carretta, E., Castellani, V., Centuriòn, M., Chieffi, A., Claudi, R., Clementini, G., D’Antona, F., Desidera, S., François, P., Gratton, R.G., Grundahl, F., James, G., Lucatello, S., Sneden, C., Straniero, O.: The lithium content of the globular cluster NGC 6397. Astron. Astrophys. 390, 91 (2002). https://doi.org/10.1051/0004-6361:20020620

    ADS  Article  Google Scholar 

  21. Shen, Z.X., Bonifacio, P., Pasquini, L., Zaggia, S.: Li - O anti-correlation in NGC 6752: evidence for Li-enriched polluting gas. Astron. Astrophys. 524, L2 (2010). https://doi.org/10.1051/0004-6361/201015738

    ADS  Article  Google Scholar 

  22. Ventura, P., D’Antona, F.: The role of lithium production in massive AGB and super-AGB stars for the understanding of multiple populations in globular clusters. Monthly Notices of the Royal Astronomical Society 402(1), L72 (2010). https://doi.org/10.1111/j.1745-3933.2010.00805.x

    ADS  Article  Google Scholar 

  23. D’Orazi, V., Angelou, G.C., Gratton, R.G., Lattanzio, J.C., Bragaglia, A., Carretta, E., Lucatello, S., Momany, Y.: Lithium Abundances in Globular Cluster Giants: NGC 6218 (M12) and NGC 5904 (M5). Astrophys. J. 791(1), 39 (2014). https://doi.org/10.1088/0004-637X/791/1/39

    ADS  Article  Google Scholar 

  24. Prantzos, N.: Production and evolution of Li, Be, and B isotopes in the Galaxy. Astron. Astrophys. 542, A67 (2012). https://doi.org/10.1051/0004-6361/201219043

    ADS  Article  Google Scholar 

  25. Pasquini, L., Bonifacio, P., Randich, S., Galli, D., Gratton, R.G.: Beryllium in turnoff stars of NGC 6397: Early Galaxy spallation, cosmochronology and cluster formation. Astron. Astrophys. 426, 651 (2004). https://doi.org/10.1051/0004-6361:20041254

    ADS  Article  Google Scholar 

  26. Pasquini, L., Bonifacio, P., Randich, S., Galli, D., Gratton, R.G., Wolff, B.: Beryllium abundance in turn-off stars of NGC 6752. Astron. Astrophys. 464(2), 601 (2007). https://doi.org/10.1051/0004-6361:20066260

    ADS  Article  Google Scholar 

  27. Pasquini, L., Koch, A., Smiljanic, R., Bonifacio, P., Modigliani, A.: The Be-test in the Li-rich star #1657 of NGC 6397: evidence for Li-flash in RGB stars? Astron. Astrophys. 563, A3 (2014). https://doi.org/10.1051/0004-6361/201323220

    ADS  Article  Google Scholar 

  28. Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., Kotzlowski, H.: Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. In: Iye, M., Moorwood, A.F. (eds.) Optical and IR Telescope Instrumentation and Detectors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4008 (2000), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4008, pp. 534–545. https://doi.org/10.1117/12.395512

  29. Zanutta, A., Atkinson, D., Baldini, V., et al.: CUBES Phase-A design overview, ExA, in press as part of the CUBES Special Issue. ExA (2021)

  30. Calcines, A., Wells, M., O’Brien, K., et al.: CUBES Phase-A design overview, ExA, in press as part of the CUBES Special Issue. ExA (2021)

  31. Pasquini, L.: UV opportunities at ESO. Astrophysics and Space Science 354(1), 121 (2014). https://doi.org/10.1007/s10509-014-2049-x

    ADS  Article  Google Scholar 

  32. Evans, C.J., Puech, M., Rodrigues, M., Barbuy, B., Cuby, J.G., Dalton, G., Fitzsimons, E., Hammer, F., Jagourel, P. , Kaper, L., Morris, S.L., Morris, T.J.: Science requirements and trade-offs for the MOSAIC instrument for the European ELT. In: Evans, C.J., Simard, L., Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy VI, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9908, (2016), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9908, p. 99089J. https://doi.org/10.1117/12.2231675

  33. Evans, C.J., Barbuy, B., Castilho, B., Smiljanic, R., Melendez, J., Japelj, J., Cristiani, S., Snodgrass, C., Bonifacio, P., Puech, M., Quirrenbach, A.: Revisiting the science case for near-UV spectroscopy with the VLT. In: Evans, C.J., Simard, L., Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy VII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10702, (2018), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10702, p. 107022E. https://doi.org/10.1117/12.2312022

  34. Ernandes, H., Evans, C.J., Barbuy, B., Castilho, B., Cescutti, G., Christlieb, N., Cristiani, S., Di Marcantonio, P., Hansen, C., Quirrenbach, A., Smiljanic, R.: Stellar astrophysics in the near-UV with VLT-CUBES. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11447 (2020), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11447, p. 1144760. https://doi.org/10.1117/12.2562497

  35. Plez, B.: Turbospectrum: Code for spectral synthesis (2012)

  36. Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U.G., Nordlund, Å., Plez, B.: A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. A&A 486, 951 (2008). https://doi.org/10.1051/0004-6361:200809724

    ADS  Article  Google Scholar 

  37. Ryabchikova, T., Piskunov, N., Kurucz, R.L., Stempels, H.C., Heiter, U., Pakhomov, Y., Barklem, P.S.: A major upgrade of the VALD database. Physica Scripta 90(5), 054005 (2015). https://doi.org/10.1088/0031-8949/90/5/054005

    ADS  Article  Google Scholar 

  38. Kurucz, R.L.: Atomic and molecular data for opacity calculations. Revista Mexicana de Astronomia y Astrofisica 23, 45 (1992)

    ADS  Google Scholar 

  39. Masseron, T., Plez, B., Van Eck, S., Colin, R., Daoutidis, I., Godefroid, M., Coheur, P.F., Bernath, P., Jorissen, A., Christlieb, N.: CH in stellar atmospheres: an extensive linelist. Astron. Astrophys. 571, A47 (2014). https://doi.org/10.1051/0004-6361/201423956

    Article  Google Scholar 

  40. Brooke, J.S.A., Ram, R.S., Western, C.M., Li, G., Schwenke, D.W., Bernath, P.F.: Einstein a coefficients and oscillator strengths for the A\(^{2} \Pi -X ^{2} \Sigma ^{+}\) (Red) and B\(^{2}\Sigma ^{+}-X^{2}\Sigma ^{+}\) (Violet) systems and rovibrational transitions in the X\(^{2}\Sigma ^{+}\) State of CN. Astrophys. J. 210(2), 23 (2014). https://doi.org/10.1088/0067-0049/210/2/23

  41. Sneden, C., Lucatello, S., Ram, R.S., Brooke, J.S.A., Bernath, P.: Line Lists for the A \(^{2}\Pi -X ^{2}\Sigma ^{+}\) (Red) and B \(^{2}\Sigma ^{+}-X ^{2}\Sigma ^{+}\) (Violet) systems of CN, \(^{13}\)C\(^{14}\)N, and \(^{12}\)C\(^{15}\)N, and application to astronomical spectra. Astrophys. J. 214(2), 26 (2014). https://doi.org/10.1088/0067-0049/214/2/26

  42. Brooke, J.S.A., Bernath, P.F., Schmidt, T.W., Bacskay, G.B.: Line strengths and updated molecular constants for the C\(_{2}\) Swan system. Journal of Quantitative Spectroscopy and Radiative Transfer 124, 11 (2013). https://doi.org/10.1016/j.jqsrt.2013.02.025

  43. Peterson, R.C., Barbuy, B., Spite, M.: Trans-iron Ge, As, Se, and heavier elements in the dwarf metal-poor stars HD 19445, HD 84937, HD 94028, HD 140283, and HD 160617. Astron. Astrophys. 638, A64 (2020). https://doi.org/10.1051/0004-6361/202037689

    ADS  Article  Google Scholar 

  44. Genoni, M., Landoni, M., Cupani, G., et al.: The CUBES Instrument model and simulation tools, ExA, in press as part of the CUBES Special Issue. ExA (2021)

  45. Bell, R.A., Paltoglou, G., Tripicco, M.J.: The calibration of synthetic colours. Monthly Notices of the Royal Astronomical Society 268, 771 (1994). https://doi.org/10.1093/mnras/268.3.771

    ADS  Article  Google Scholar 

  46. Jofré, P., Heiter, U., Soubiran, C., Blanco-Cuaresma, S., Worley, C.C., Pancino, E., Cantat-Gaudin, T., Magrini, L., Bergemann, M., González Hernández, J.I., Hill, V., Lardo, C., de Laverny, P., Lind, K., Masseron, T., Montes, D., Mucciarelli, A., Nordlander, T., Recio Blanco, A., Sobeck, J., Sordo, R., Sousa, S.G., Tabernero, H., Vallenari, A., Van Eck, S.: Gaia FGK benchmark stars: Metallicity. Astron. Astrophys. 564, A133 (2014). https://doi.org/10.1051/0004-6361/201322440

    Article  Google Scholar 

  47. Kurucz, R.L.: New atlases for solar flux, irradiance, central intensity, and limb intensity. Memorie della Societa Astronomica Italiana Supplementi 8, 189 (2005)

    ADS  Google Scholar 

  48. Fontenla, J.M., Stancil, P.C., Landi, E.: Solar spectral irradiance, solar activity, and the near-ultra-violet. Astrophys. J. 809(2), 157 (2015). https://doi.org/10.1088/0004-637X/809/2/157

    ADS  Article  Google Scholar 

  49. Short, C.I., Hauschildt, P.H.: Non-LTE modeling of the near-ultraviolet band of late-type stars. Astrophys. J. 691(2), 1634 (2009). https://doi.org/10.1088/0004-637X/691/2/1634

    ADS  Article  Google Scholar 

  50. Young, M.E., Short, C.I.: Non-LTE stellar population synthesis of globular clusters using synthetic integrated light spectra. I. Constructing the IL Spectra. Astrophys. J. 835(2), 292 (2017). https://doi.org/10.3847/1538-4357/835/2/292

    ADS  Article  Google Scholar 

  51. Smiljanic, R.: Stellar abundances of beryllium and CUBES. Astrophysics and Space Science 354(1), 55 (2014). https://doi.org/10.1007/s10509-014-1916-9

    ADS  Article  Google Scholar 

  52. Barbuy, B., Bawden Macanhan, V., Bristow, P., Castilho, B., Dekker, H., Delabre, B., Diaz, M., Gneiding, C., Kerber, F., Kuntschner, H., La Mura, G., Maciel, W., Meléndez, J., Pasquini, L., Pereira, C.B., Petitjean, P., Reiss, R., Siqueira-Mello, C., Smiljanic, R., Vernet, J.: CUBES: cassegrain U-band Brazil-ESO spectrograph. Astrophysics and Space Science 354(1), 191 (2014). https://doi.org/10.1007/s10509-014-2039-z

    ADS  Article  Google Scholar 

  53. Bristow, P., Barbuy, B., Macanhan, V.B., Castilho, B., Dekker, H., Delabre, B., Diaz, M., Gneiding, C., Kerber, F., Kuntschner, H., La Mura, G., Reiss, R., Vernet, J.: Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph. In: Ramsay, S.K., McLean, I.S., Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy V, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, (2014), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, p. 914709. https://doi.org/10.1117/12.2054751

  54. Narloch, W., Kaluzny, J., Poleski, R., Rozyczka, M., Pych, W., Thompson, I.B.: A ground-based proper motion study of 12 nearby globular clusters. Monthly Notices of the Royal Astronomical Society 471(2), 1446 (2017). https://doi.org/10.1093/mnras/stx1637

    ADS  Article  Google Scholar 

  55. Gratton, R.G., Bragaglia, A., Carretta, E., Clementini, G., Desidera, S., Grundahl, F., Lucatello, S.: Distances and ages of NGC 6397, NGC 6752 and 47 Tuc. Astron. Astrophys. 408, 529 (2003). https://doi.org/10.1051/0004-6361:20031003

    ADS  Article  Google Scholar 

  56. Harris, W.E.: A catalog of parameters for globular clusters in the milky way. Astrophysical Journal 112, 1487 (1996). https://doi.org/10.1086/118116

    Article  Google Scholar 

  57. Baumgardt, H., Vasiliev, E.: Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST, and literature data. Monthly Notices of the Royal Astronomical Society 505(4), 5957 (2021). https://doi.org/10.1093/mnras/stab1474

    ADS  Article  Google Scholar 

  58. Feuillet, D.K., Sahlholdt, C.L., Feltzing, S., Casagrande, L.: Selecting accreted populations: metallicity, elemental abundances, and ages of the Gaia-Sausage-Enceladus and Sequoia populations. arXiv:2105.12141 (2021)

  59. Johnson, C.I., Dupree, A.K., Mateo, M., Bailey, I., John, I., Olszewski, E.W., Walker, M.G.: The most metal-poor stars in omega centauri (NGC 5139). The Astronomical Journal 156(6), 254 (2020). https://doi.org/10.3847/1538-3881/ab8819

    ADS  Article  Google Scholar 

  60. Yi, S.K., Kim, Y.C., Demarque, P.: The Y\(^{2}\) stellar evolutionary tracks. ApJS 144, 259 (2003). https://doi.org/10.1086/345101

  61. Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., Asplund, M.: An absolutely calibrated T\(_{eff}\) scale from the infrared flux method. Dwarfs and subgiants. Astron. Astrophys. 512, A54 (2010). https://doi.org/10.1051/0004-6361/200913204

  62. Salaris, M., Weiss, A., Ferguson, J.W., Fusilier, D.J.: On the primordial scenario for abundance variations within globular clusters: The isochrone test. Astrophys. J. 645(2), 1131 (2006). https://doi.org/10.1086/504520

    ADS  Article  Google Scholar 

  63. Smiljanic, R., Pasquini, L., Bonifacio, P., Galli, D., Gratton, R.G., Randich, S., Wolff, B.: Beryllium abundances and star formation in the halo and in the thick disk. Astron. Astrophys. 499(1), 103 (2009). https://doi.org/10.1051/0004-6361/200810592

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Use was made of the Simbad database, operated at the CDS, Strasbourg, France, and of NASA’s Astrophysics Data System Bibliographic Services. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riano E. Giribaldi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest. This work was supported by the National Science Centre, Poland, through project 2018/31/B/ST9/01469.

Additional information

The authors acknowledge support by the National Science Centre, Poland, through project 2018/31/B/ST9/01469.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giribaldi, R.E., Smiljanic, R. Beryllium abundances in turn-off stars of globular clusters with the CUBES spectrograph. Exp Astron (2022). https://doi.org/10.1007/s10686-022-09850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-022-09850-z

Keywords

  • Globular clusters
  • Stellar abundances
  • Stellar spectral lines