Skip to main content

Molecular hydrogen in absorption at high redshifts

Science cases for CUBES

Abstract

Absorption lines from molecular hydrogen (\(\mathrm H_2\)) in the spectra of background sources are a powerful probe of the physical conditions in intervening cold neutral medium. At high redshift, \(z>2\), \(\mathrm H_2\) lines are conveniently shifted in the optical domain, allowing the use of ground-based telescopes to perform high-resolution spectroscopy, which is essential for a proper analysis of the cold gas. We describe recent observational progress, based on the development of efficient pre-selection techniques in low-resolution spectroscopic surveys such as the Sloan Digital Sky Survey (SDSS). The next generation of spectrographs with high blue-throughput, such as CUBES, will certainly significantly boost the efficiency and outcome of follow-up observations. In this paper, we discuss high priority science cases for CUBES, building on recent \(\mathrm H_2\) observations at high-z: probing the physical conditions in the cold phase of regular galaxies and outflowing gas from active galactic nucleus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Notes

  1. “Proximate” here refers to absorption systems with redshift \(z_\mathrm{abs}\) similar to that of the quasar emission, \(z_{em}\), typically with \({\varDelta } v \approx c \cdot |z_\mathrm{abs} - z_\mathrm{em}|/ (1+z_\mathrm{em})< \mathrm few \times 1000\,km\,s^{-1}\), where c is the speed of light. Such absorption systems can be physically associated with the quasar and/or its host galaxy.

  2. Corresponding to full width half maximum (FWHM) of the instrument function, \(\mathrm{FWHM} = c/R \approx 6\) km s\(^{-1}\), where c is the speed of light.

  3. Here and after the column densities, N, are expressed in particles (atoms or molecules) per cm\(^{2}\)

  4. H\(_2\) absorption lines mostly falls in UVB arm of X-shooter

  5. However, since the cross section of associated systems are found to be much larger, as was found later, the incidence rate of intervening and proximate systems are not much different, see Section 4.2

  6. In the case of H\(_2\), this corresponds to the ratio of J=1 and J=0 rotational levels.

  7. This is due to combination of two factors: (i) the cross-section of dense molecular gas (that is needed to detect aforementioned complex molecules) is much smaller than that of H\(_2\)-bearing gas (associated mostly with more diffuse cold medium) (ii) the small fraction of radio bright QSOs, which are needed for the analysis sensitive transition

References

  1. Arabsalmani, M., Møller, P., Fynbo, J.P.U., Christensen, L., Freudling, W., Savaglio, S., Zafar, T.: On the mass-metallicity relation, velocity dispersion, and gravitational well depth of GRB host galaxies. MNRAS 446(1), 990–999 (2015). https://doi.org/10.1093/mnras/stu2138

    ADS  Article  Google Scholar 

  2. Bagdonaite, J., Murphy, M.T., Kaper, L., Ubachs, W.: Constraint on a variation of the proton-to-electron mass ratio from H2 absorption towards quasar Q2348–011. MNRAS 421(1), 419–425 (2012). https://doi.org/10.1111/j.1365-2966.2011.20319.x

    ADS  Article  Google Scholar 

  3. Balashev, S.A., Ivanchik, A.V., Varshalovich, D.A.: HD/H2 molecular clouds in the early Universe: The problem of primordial deuterium. Astronomy Letters 36(11), 761–772 (2010). https://doi.org/10.1134/S1063773710110010

    ADS  Article  Google Scholar 

  4. Balashev, S.A., Klimenko, V.V., Ivanchik, A.V., Varshalovich, D.A., Petitjean, P., Noterdaeme, P.: Molecular hydrogen absorption systems in Sloan Digital Sky Survey. MNRAS 440(1), 225–239 (2014). https://doi.org/10.1093/mnras/stu275

    ADS  Article  Google Scholar 

  5. Balashev, S.A., Klimenko, V.V., Noterdaeme, P., Krogager, J.K., Varshalovich, D.A., Ivanchik, A.V., Petitjean, P., Srianand, R., Ledoux, C.: X-shooter observations of strong H2-bearing DLAs at high redshift. MNRAS 490(2), 2668–2678 (2019). https://doi.org/10.1093/mnras/stz2707

    ADS  Article  Google Scholar 

  6. Balashev, S.A., Ledoux, C., Noterdaeme, P., Srianand, R., Petitjean, P., Gupta, N.: Nature of the DLA towards Q 0528–250: High pressure and strong UV field revealed by excitation of C I, H2, and Si II. MNRAS 497(2), 1946–1956 (2020). https://doi.org/10.1093/mnras/staa2108

    ADS  Article  Google Scholar 

  7. Balashev, S.A., Noterdaeme, P.: Constraining the H2 column density distribution at z ~ 3 from composite DLA spectra. MNRAS 478(1), L7–L11 (2018). https://doi.org/10.1093/mnrasl/sly067

    ADS  Article  Google Scholar 

  8. Balashev, S.A., Noterdaeme, P., Rahmani, H., Klimenko, V.V., Ledoux, C., Petitjean, P., Srianand, R., Ivanchik, A.V., Varshalovich, D.A.: CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system. MNRAS 470(3), 2890–2910 (2017). https://doi.org/10.1093/mnras/stx1339

    ADS  Article  Google Scholar 

  9. Bialy, S., Sternberg, A.: Thermal phases of the neutral atomic interstellar medium from solar metallicity to primordial gas. ApJ 881(2), 160 (2019). https://doi.org/10.3847/1538-4357/ab2fd1

    ADS  Article  Google Scholar 

  10. Bolmer, J., Ledoux, C., Wiseman, P., De Cia, A., Selsing, J., Schady, P., Greiner, J., Savaglio, S., Burgess, J.M., D’Elia, V., Fynbo, J.P.U., Goldoni, P., Hartmann, D.H., Heintz, K.E., Jakobsson, P., Japelj, J., Kaper, L., Tanvir, N.R., Vreeswijk, P.M., Zafar, T.: Evidence for diffuse molecular gas and dust in the hearts of gamma-ray burst host galaxies. Unveiling the nature of high-redshift damped Lyman-α systems. A&A 623, A43 (2019). https://doi.org/10.1051/0004-6361/201834422

    ADS  Article  Google Scholar 

  11. Carruthers, G.R.: Rocket observation of interstellar molecular hydrogen. ApJ 161, L81 (1970). https://doi.org/10.1086/180575

    ADS  Article  Google Scholar 

  12. Cicone, C., Maiolino, R., Sturm, E., Graciá-Carpio, J., Feruglio, C., Neri, R., Aalto, S., Davies, R., Fiore, F., Fischer, J., García-Burillo, S., González-Alfonso, E., Hailey-Dunsheath, S., Piconcelli, E., Veilleux, S.: Massive molecular outflows and evidence for AGN feedback from CO observations. A&A 562, A21 (2014). https://doi.org/10.1051/0004-6361/201322464

    ADS  Article  Google Scholar 

  13. Daprà, M., Niu, M.L., Salumbides, E.J., Murphy, M.T., Ubachs, W.: Constraint on a cosmological variation in the proton-to-electron mass ratio from electronic CO absorption. ApJ 826(2), 192 (2016). https://doi.org/10.3847/0004-637X/826/2/192

    ADS  Article  Google Scholar 

  14. Daprà, M., Noterdaeme, P., Vonk, M., Murphy, M.T., Ubachs, W.: Analysis of carbon monoxide absorption at zabs 2.5 to constrain variation of the proton-to-electron mass ratio. MNRAS 467(4), 3848–3855 (2017). https://doi.org/10.1093/mnras/stx331

    ADS  Article  Google Scholar 

  15. Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., Kotzlowski, H.: Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. In: Iye, M., Moorwood, A.F. (eds.) Optical and IR Telescope Instrumentation and Detectors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4008, pp. 534–545 (2000). https://doi.org/10.1117/12.395512

  16. Ge, J., Bechtold, J.: Molecular hydrogen absorption in the z = 1.97 Damped Lyα absorption system toward quasi-stellar object Q0013-004. ApJ 477(2), L73–L77 (1997). https://doi.org/10.1086/310527

    ADS  Article  Google Scholar 

  17. Genoni, A., Landoni, M., Cupani, G., et al.: The CUBES Instrument model and simulation tools. ExA in press as part of the CUBES Special Issue (2021)

  18. Guimarães, R., Noterdaeme, P., Petitjean, P., Ledoux, C., Srianand, R., López, S., Rahmani, H.: Metallicities, dust, and molecular content of a QSO-damped Lyα system reaching log N(H I) = 22: An Analog to GRB-DLAs. AJ 143(6), 147 (2012). https://doi.org/10.1088/0004-6256/143/6/147

    ADS  Article  Google Scholar 

  19. Henkel, C., Menten, K.M., Murphy, M.T., Jethava, N., Flambaum, V.V., Braatz, J.A., Muller, S., Ott, J., Mao, R.Q.: The density, the cosmic microwave background, and the proton-to-electron mass ratio in a cloud at redshift 0.9. A&A 500(2), 725–734 (2009). https://doi.org/10.1051/0004-6361/200811475

    ADS  Article  Google Scholar 

  20. Ivanov, T.I., Roudjane, M., Vieitez, M.O., de Lange, C.A., Tchang-Brillet, W.Ü.L., Ubachs, W.: HD as a probe for detecting mass variation on a cosmological time scale. Phys. Rev. Lett. 100(9), 093007 (2008). https://doi.org/10.1103/PhysRevLett.100.093007

    ADS  Article  Google Scholar 

  21. Jorgenson, R.A., Murphy, M.T., Thompson, R., Carswell, R.F.: The Magellan uniform survey of damped Lymanα systems - II. Paucity of strong molecular hydrogen absorption. MNRAS 443(3), 2783–2800 (2014). https://doi.org/10.1093/mnras/stu1314

    ADS  Article  Google Scholar 

  22. Jorgenson, R.A., Wolfe, A.M., Prochaska, J.X.: Understanding physical conditions in high-redshift Galaxies through C I fine structure lines: data and methodology. ApJ 722(1), 460–490 (2010). https://doi.org/10.1088/0004-637X/722/1/460

    ADS  Article  Google Scholar 

  23. Jorgenson, R.A., Wolfe, A.M., Prochaska, J.X., Carswell, R.F.: Direct evidence of cold gas in DLA 0812+32B. ApJ 704(1), 247–254 (2009). https://doi.org/10.1088/0004-637X/704/1/247

    ADS  Article  Google Scholar 

  24. Kanekar, N., Ubachs, W., Menten, K.M., Bagdonaite, J., Brunthaler, A., Henkel, C., Muller, S., Bethlem, H.L., Dapra, M.: Constraints on changes in the proton-electron mass ratio using methanol lines. MNRAS 448, L104–L108 (2015). https://doi.org/10.1093/mnrasl/slu206

    ADS  Article  Google Scholar 

  25. Klimenko, V.V., Balashev, S.A.: Physical conditions in the diffuse interstellar medium of local and high-redshift galaxies: measurements based on the excitation of H2 rotational and C I fine-structure levels. MNRAS 498(2), 1531–1549 (2020). https://doi.org/10.1093/mnras/staa2134

    ADS  Article  Google Scholar 

  26. Kosenko, D.N., Balashev, S.A., Noterdaeme, P., Krogager, J.K., Srianand, R., Ledoux, C.: HD molecules at high redshift: cosmic ray ionization rate in the diffuse interstellar medium. MNRAS 505(3), 3810–3822 (2021). https://doi.org/10.1093/mnras/stab1535

    ADS  Article  Google Scholar 

  27. Krogager, J.K., Fynbo, J.P.U., Møller, P., Noterdaeme, P., Heintz, K.E., Pettini, M.: The effect of dust bias on the census of neutral gas and metals in the high-redshift Universe due to SDSS-II quasar colour selection. MNRAS 486(3), 4377–4397 (2019). https://doi.org/10.1093/mnras/stz1120

    ADS  Article  Google Scholar 

  28. Krühler, T., Ledoux, C., Fynbo, J.P.U., Vreeswijk, P.M., Schmidl, S., Malesani, D., Christensen, L., De Cia, A., Hjorth, J., Jakobsson, P., Kann, D.A., Kaper, L., Vergani, S.D., Afonso, P.M.J., Covino, S., de Ugarte Postigo, A., D’Elia, V., Filgas, R., Goldoni, P., Greiner, J., Hartoog, O.E., Milvang-Jensen, B., Nardini, M., Piranomonte, S., Rossi, A., Sánchez-Ramírez, R., Schady, P., Schulze, S., Sudilovsky, V., Tanvir, N.R., Tagliaferri, G., Watson, D.J., Wiersema, K., Wijers, R.A.M.J., Xu, D.: Molecular hydrogen in the damped Lyman α system towards GRB 120815A at z = 2.36. A&A 557, A18 (2013). https://doi.org/10.1051/0004-6361/201321772

    ADS  Article  Google Scholar 

  29. Ledoux, C., Noterdaeme, P., Petitjean, P., Srianand, R.: Neutral atomic-carbon quasar absorption-line systems at z> 1.5. Sample selection, H i content, reddening, and 2175 Å extinction feature. A&A 580, A8 (2015). https://doi.org/10.1051/0004-6361/201424122

    ADS  Article  Google Scholar 

  30. Ledoux, C., Petitjean, P., Srianand, R.: The very large telescope ultraviolet and visible Echelle spectrograph survey for molecular hydrogen in high-redshift damped Lyman α systems. MNRAS 346(1), 209–228 (2003). https://doi.org/10.1046/j.1365-2966.2003.07082.x

    ADS  Article  Google Scholar 

  31. Levshakov, S.A., Varshalovich, D.A.: Molecular hydrogen in the z=2.811 absorbing material toward the quasar PKS 0528-250. MNRAS 212, 517–521 (1985). https://doi.org/10.1093/mnras/212.3.517

    ADS  Article  Google Scholar 

  32. Lyman, J.D., Levan, A.J., Tanvir, N.R., Fynbo, J.P.U., McGuire, J.T.W., Perley, D.A., Angus, C.R., Bloom, J.S., Conselice, C.J., Fruchter, A.S., Hjorth, J., Jakobsson, P., Starling, R.L.C.: The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. MNRAS 467(2), 1795–1817 (2017). https://doi.org/10.1093/mnras/stx220

    ADS  Article  Google Scholar 

  33. Morton, D.C., Jian-Sheng, C., Wright, A.E., Peterson, B.A., Jauncey, D.L.: Absorption lines and ion abundances in the QSO PKS 0528–250. MNRAS 193, 399–413 (1980). https://doi.org/10.1093/mnras/193.2.399

    ADS  Article  Google Scholar 

  34. Noterdaeme, P., Balashev, S., Combes, F., Gupta, N., Srianand, R., Krogager, J.K., Laursen, P., Omont, A.: Remarkably high mass and velocity dispersion of molecular gas associated with a regular, absorption-selected type I quasar. A&A 651, A17 (2021). https://doi.org/10.1051/0004-6361/202140745

    ADS  Article  Google Scholar 

  35. Noterdaeme, P., Balashev, S., Krogager, J.K., Laursen, P., Srianand, R., Gupta, N., Petitjean, P., Fynbo, J.P.U.: Down-the-barrel observations of a multi-phase quasar outflow at high redshift. VLT/X-shooter spectroscopy of the proximate molecular absorber at z = 2.631 towards SDSS J001514+184212. A&A 646, A108 (2021). https://doi.org/10.1051/0004-6361/202038877

    ADS  Article  Google Scholar 

  36. Noterdaeme, P., Balashev, S., Krogager, J.K., Srianand, R., Fathivavsari, H., Petitjean, P., Ledoux, C.: Proximate molecular quasar absorbers. Excess of damped H2 systems at zabs ≈ zQSO in SDSS DR14. A&A 627, A32 (2019). https://doi.org/10.1051/0004-6361/201935371

    ADS  Article  Google Scholar 

  37. Noterdaeme, P., Krogager, J.K., Balashev, S., Ge, J., Gupta, N., Krühler, T., Ledoux, C., Murphy, M.T., Pâris, I., Petitjean, P., Rahmani, H., Srianand, R., Ubachs, W.: Discovery of a Perseus-like cloud in the early Universe. H I-to-H2 transition, carbon monoxide and small dust grains at zabs ≈ 2.53 towards the quasar J0000+0048. A&A 597, A82 (2017). https://doi.org/10.1051/0004-6361/201629173

    ADS  Article  Google Scholar 

  38. Noterdaeme, P., Ledoux, C., Petitjean, P., Le Petit, F., Srianand, R., Smette, A.: Excitation mechanisms in newly discovered H\_2-bearing damped Lyman-α clouds: systems with low molecular fractions. A&A 474(2), 393–407 (2007). https://doi.org/10.1051/0004-6361:20078021

    ADS  Article  Google Scholar 

  39. Noterdaeme, P., Ledoux, C., Petitjean, P., Srianand, R.: Molecular hydrogen in high-redshift damped Lyman-α systems: the VLT/UVES database. A&A 481(2), 327–336 (2008). https://doi.org/10.1051/0004-6361:20078780

    ADS  Article  Google Scholar 

  40. Noterdaeme, P., Ledoux, C., Srianand, R., Petitjean, P., Lopez, S.: Diffuse molecular gas at high redshift. Detection of CO molecules and the 2175 Å dust feature at z = 1.64. A&A 503(3), 765–770 (2009). https://doi.org/10.1051/0004-6361/200912330

    ADS  Article  Google Scholar 

  41. Noterdaeme, P., Ledoux, C., Zou, S., Petitjean, P., Srianand, R., Balashev, S., López, S.: Spotting high-z molecular absorbers using neutral carbon. Results from a complete spectroscopic survey with the VLT. A&A 612, A58 (2018). https://doi.org/10.1051/0004-6361/201732266

    ADS  Article  Google Scholar 

  42. Noterdaeme, P., Petitjean, P., Carithers, W.C., Pâris, I., Font-Ribera, A., Bailey, S., Aubourg, E., Bizyaev, D., Ebelke, G., Finley, H., Ge, J., Malanushenko, E., Malanushenko, V., Miralda-Escudé, J., Myers, A.D., Oravetz, D., Pan, K., Pieri, M.M., Ross, N.P., Schneider, D.P., Simmons, A., York, D.G.: Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9. A&A 547, L1 (2012). https://doi.org/10.1051/0004-6361/201220259

    ADS  Article  Google Scholar 

  43. Noterdaeme, P., Petitjean, P., Ledoux, C., López, S., Srianand, R., Vergani, S.D.: A translucent interstellar cloud at z = 2.69. CO, H2, and HD in the line-of-sight to SDSS J123714.60+064759.5. A&A 523, A80 (2010). https://doi.org/10.1051/0004-6361/201015147

    ADS  Article  Google Scholar 

  44. Noterdaeme, P., Petitjean, P., Pâris, I., Cai, Z., Finley, H., Ge, J., Pieri, M.M., York, D.G.: A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters. A&A 566, A24 (2014). https://doi.org/10.1051/0004-6361/201322809

    ADS  Article  Google Scholar 

  45. Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C., Le Petit, F.: Physical conditions in the neutral interstellar medium at z = 2.43 toward Q 2348-011. A&A 469(2), 425–436 (2007). https://doi.org/10.1051/0004-6361:20066897

    ADS  Article  Google Scholar 

  46. Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C., López, S.: The evolution of the cosmic microwave background temperature. Measurements of TCMDat high redshift from carbon monoxide excitation. A&A 526, L7 (2011). https://doi.org/10.1051/0004-6361/201016140

    ADS  Article  Google Scholar 

  47. Noterdaeme, P., Srianand, R., Rahmani, H., Petitjean, P., Pâris, I., Ledoux, C., Gupta, N., López, S.: VLT/UVES observations of extremely strong intervening damped Lyman-α systems. Molecular hydrogen and excited carbon, oxygen, and silicon at log N(H i) = 22.4. A&A 577, A24 (2015). https://doi.org/10.1051/0004-6361/201425376

    ADS  Article  Google Scholar 

  48. Parks, D., Prochaska, J.X., Dong, S., Cai, Z.: Deep learning of quasar spectra to discover and characterize damped Lyα systems. MNRAS 476(1), 1151–1168 (2018). https://doi.org/10.1093/mnras/sty196

    ADS  Article  Google Scholar 

  49. Pei, Y.C., Fall, S.M., Bechtold, J.: Confirmation of dust in damped Lyman-alpha systems. ApJ 378, 6 (1991). https://doi.org/10.1086/170401

    ADS  Article  Google Scholar 

  50. Petitjean, P., Srianand, R., Ledoux, C.: Molecular hydrogen and the nature of damped Lyman-alpha systems. A&A 364, L26–L30 (2000)

    ADS  Google Scholar 

  51. Pontzen, A., Pettini, M.: Dust biasing of damped Lyman alpha systems: a Bayesian analysis. MNRAS 393(2), 557–568 (2009). https://doi.org/10.1111/j.1365-2966.2008.14193.x

    ADS  Article  Google Scholar 

  52. Prochaska, J.X., Howk, J.C., Wolfe, A.M.: The elemental abundance pattern in a galaxy at z = 2.626. Nature 423(6935), 57–59 (2003). https://doi.org/10.1038/nature01524

    ADS  Article  Google Scholar 

  53. Prochaska, J.X., Sheffer, Y., Perley, D.A., Bloom, J.S., Lopez, L.A., Dessauges-Zavadsky, M., Chen, H.W., Filippenko, A.V., Ganeshalingam, M., Li, W., Miller, A.A., Starr, D.: The first positive detection of molecular gas in a GRB host galaxy. ApJ 691(1), L27–L32 (2009). https://doi.org/10.1088/0004-637X/691/1/L27

    ADS  Article  Google Scholar 

  54. Rahmani, H., Wendt, M., Srianand, R., Noterdaeme, P., Petitjean, P., Molaro, P., Whitmore, J.B., Murphy, M.T., Centurion, M., Fathivavsari, H., D’Odorico, S., Evans, T.M., Levshakov, S.A., Lopez, S., Martins, C.J.A.P., Reimers, D., Vladilo, G.: The UVES large program for testing fundamental physics - II. Constraints on a change in μ towards quasar HE 0027-1836. MNRAS 435(1), 861–878 (2013). https://doi.org/10.1093/mnras/stt1356

    ADS  Article  Google Scholar 

  55. Ranjan, A., Noterdaeme, P., Krogager, J.K., Petitjean, P., Balashev, S.A., Bialy, S., Srianand, R., Gupta, N., Fynbo, J.P.U., Ledoux, C., Laursen, P.: Molecular gas and star formation in an absorption-selected galaxy: Hitting the bull’s eye at z = 2.46. A&A 618, A184 (2018). https://doi.org/10.1051/0004-6361/201833446

    ADS  Article  Google Scholar 

  56. Ranjan, A., Noterdaeme, P., Krogager, J.K., Petitjean, P., Srianand, R., Balashev, S.A., Gupta, N., Ledoux, C.: Chemical enrichment and host galaxies of extremely strong intervening DLAs towards quasars. Do they probe the same galactic environments as DLAs associated with γ-ray burst afterglows? A&A 633, A125 (2020). https://doi.org/10.1051/0004-6361/201936078

    ADS  Article  Google Scholar 

  57. Roman-Duval, J., Israel, F.P., Bolatto, A., Hughes, A., Leroy, A., Meixner, M., Gordon, K., Madden, S.C., Paradis, D., Kawamura, A., Li, A., Sauvage, M., Wong, T., Bernard, J.P., Engelbracht, C., Hony, S., Kim, S., Misselt, K., Okumura, K., Ott, J., Panuzzo, P., Pineda, J.L., Reach, W.T., Rubio, M.: Dust/gas correlations from Herschel observations. A&A 518, L74 (2010). https://doi.org/10.1051/0004-6361/201014575

    ADS  Article  Google Scholar 

  58. Sahnow, D.J., Friedman, S.D., Oegerle, W.R., Moos, H.W., Green, J.C., Siegmund, O.H.: Design and predicted performance of the far ultraviolet spectroscopic explorer. In: Bely, P.Y., Breckinridge J.B. (eds.) Space Telescopes and Instruments IV, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2807, pp. 2–10 (1996). https://doi.org/10.1117/12.255092

  59. Savage, B.D., Bohlin, R.C., Drake, J.F., Budich, W.: A survey of interstellar molecular hydrogen. I. ApJ 216, 291–307 (1977). https://doi.org/10.1086/155471

    ADS  Article  Google Scholar 

  60. Shull, J.M., Danforth, C.W., Anderson, K.L.: A far ultraviolet spectroscopic explorer survey of interstellar molecular hydrogen in the galactic disk. ApJ 911(1), 55 (2021). https://doi.org/10.3847/1538-4357/abe707

    ADS  Article  Google Scholar 

  61. Shull, J.M., Giroux, M.L., Penton, S.V., Tumlinson, J., Stocke, J.T., Jenkins, E.B., Moos, H.W., Oegerle, W.R., Savage, B.D., Sembach, K.R., York, D.G., Green, J.C., Woodgate, B.E.: Far ultraviolet spectroscopic explorer observations of the low-redshift Lyβ Forest. ApJ 538(1), L13–L16 (2000). https://doi.org/10.1086/312781

    ADS  Article  Google Scholar 

  62. Spitzer, l, Cochran, J., Hirshfeld, W.D.A.: Column densities of interstellar molecular hydrogen. ApJS 28, 373–389 (1974). https://doi.org/10.1086/190323

    ADS  Article  Google Scholar 

  63. Srianand, R., Noterdaeme, P., Ledoux, C., Petitjean, P.: First detection of CO in a high-redshift damped Lyman-α system. A&A 482(3), L39–L42 (2008). https://doi.org/10.1051/0004-6361:200809727

    ADS  Article  Google Scholar 

  64. Srianand, R., Petitjean, P., Ledoux, C., Ferland, G., Shaw, G.: The VLT-UVES survey for molecular hydrogen in high-redshift damped Lyman α systems: physical conditions in the neutral gas. MNRAS 362(2), 549–568 (2005). https://doi.org/10.1111/j.1365-2966.2005.09324.x

    ADS  Article  Google Scholar 

  65. Thompson, R.I.: The determination of the electron to proton inertial mass ratio via molecular transitions. Astrophys. Lett. 16(3) (1975)

  66. Tumlinson, J., Shull, J.M., Rachford, B.L., Browning, M.K., Snow, T.P., Fullerton, A.W., Jenkins, E.B., Savage, B.D., Crowther, P.A., Moos, H.W., Sembach, K.R., Sonneborn, G., York, D.G.: A far ultraviolet spectroscopic explorer survey of interstellar molecular hydrogen in the small and large magellanic clouds. ApJ 566(2), 857–879 (2002). https://doi.org/10.1086/338112

    ADS  Article  Google Scholar 

  67. Ubachs, W., Bagdonaite, J., Salumbides, E.J., Murphy, M.T., Kaper, L.: Colloquium: Search for a drifting proton-electron mass ratio from H2. Reviews of Modern Physics 88(2), 021003 (2016). https://doi.org/10.1103/RevModPhys.88.021003

    ADS  Article  Google Scholar 

  68. Ubachs, W., Salumbides, E.J., Murphy, M.T., Abgrall, H., Roueff, E.: H2/HD molecular data for analysis of quasar spectra in search of varying constants. A&A 622, A127 (2019). https://doi.org/10.1051/0004-6361/201834782

    ADS  Article  Google Scholar 

  69. Varshalovich, D.A., Levshakov, S.A.: On a time dependence of physical constants. Soviet Journal of Experimental and Theoretical Physics Letters 58(4), 237–240 (1993)

    ADS  Google Scholar 

  70. Veilleux, S., Meléndez, M., Sturm, E., Gracia-Carpio, J., Fischer, J., González-Alfonso, E., Contursi, A., Lutz, D., Poglitsch, A., Davies, R., Genzel, R., Tacconi, L., de Jong, J.A., Sternberg, A., Netzer, H., Hailey-Dunsheath, S., Verma, A., Rupke, D.S.N., Maiolino, R., Teng, S.H., Polisensky, E.: Fast molecular outflows in luminous galaxy mergers: evidence for quasar feedback from Herschel. ApJ 776(1), 27 (2013). https://doi.org/10.1088/0004-637X/776/1/27

    ADS  Article  Google Scholar 

  71. Vernet, J., Dekker, H., D’Odorico, S., Kaper, L., Kjaergaard, P., Hammer, F., Randich, S., Zerbi, F., Groot, P.J., Hjorth, J., Guinouard, I., Navarro, R., Adolfse, T., Albers, P.W., Amans, J.P., Andersen, J.J., Andersen, M.I., Binetruy, P., Bristow, P., Castillo, R., Chemla, F., Christensen, L., Conconi, P., Conzelmann, R., Dam, J., de Caprio, V., de Ugarte Postigo, A., Delabre, B., di Marcantonio, P., Downing, M., Elswijk, E., Finger, G., Fischer, G., Flores, H., François, P., Goldoni, P., Guglielmi, L., Haigron, R., Hanenburg, H., Hendriks, I., Horrobin, M., Horville, D., Jessen, N.C., Kerber, F., Kern, L., Kiekebusch, M., Kleszcz, P., Klougart, J., Kragt, J., Larsen, H.H., Lizon, J.L., Lucuix, C., Mainieri, V., Manuputy, R., Martayan, C., Mason, E., Mazzoleni, R., Michaelsen, N., Modigliani, A., Moehler, S., Møller, P., Norup Sørensen, A., Nørregaard, P., Péroux, C., Patat, F., Pena, E., Pragt, J., Reinero, C., Rigal, F., Riva, M., Roelfsema, R., Royer, F., Sacco, G., Santin, P., Schoenmaker, T., Spano, P., Sweers, E., Ter Horst, R., Tintori, M., Tromp, N., van Dael, P., van der Vliet, H., Venema, L., Vidali, M., Vinther, J., Vola, P., Winters, R., Wistisen, D., Wulterkens, G., Zacchei, A.: X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. A&A 536, A105 (2011). https://doi.org/10.1051/0004-6361/201117752

    ADS  Article  Google Scholar 

  72. Vogt, S.S., Allen, S.L., Bigelow, B.C., Bresee, L., Brown, B., Cantrall, T., Conrad, A., Couture, M., Delaney, C., Epps, H.W., Hilyard, D., Hilyard, D.F., Horn, E., Jern, N., Kanto, D., Keane, M.J., Kibrick, R.I., Lewis, J.W., Osborne, J., Pardeilhan, G.H., Pfister, T., Ricketts, T., Robinson, L.B., Stover, R.J., Tucker, D., Ward, J., Wei, M.Z.: HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope. In: Crawford, D.L., Craine, E.R. (eds.) Instrumentation in Astronomy VIII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2198, p. 362 (1994). https://doi.org/10.1117/12.176725

  73. ...York, D.G., Adelman, J., Anderson John, E.J., Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J.A., Barkhouser, R., Bastian, S., Berman, E., Boroski, W.N., Bracker, S., Briegel, C., Briggs, J.W., Brinkmann, J., Brunner, R., Burles, S., Carey, L., Carr, M.A., Castander, F.J., Chen, B., Colestock, P.L., Connolly, A.J., Crocker, J.H., Csabai, I., Czarapata, P.C., Davis, J.E., Doi, M., Dombeck, T., Eisenstein, D., Ellman, N., Elms, B.R., Evans, M.L., Fan, X., Federwitz, G.R., Fiscelli, L., Friedman, S., Frieman, J.A., Fukugita, M., Gillespie, B., Gunn, J.E., Gurbani, V.K., de Haas, E., Haldeman, M., Harris, F.H., Hayes, J., Heckman, T.M., Hennessy, G.S., Hindsley, R.B., Holm, S., Holmgren, D.J., Huang, C.H., Hull, C., Husby, D., Ichikawa, S.I., Ichikawa, T., Ivezić, Ž, Kent, S., Kim, R.S.J., Kinney, E., Klaene, M., Kleinman, A.N., Kleinman, S., Knapp, G.R., Korienek, J., Kron, R.G., Kunszt, P.Z., Lamb, D.Q., Lee, B., Leger, R.F., Limmongkol, S., Lindenmeyer, C., Long, D.C., Loomis, C., Loveday, J., Lucinio, R., Lupton, R.H., MacKinnon, B., Mannery, E.J., Mantsch, P.M., Margon, B., McGehee, P., McKay, T.A., Meiksin, A., Merelli, A., Monet, D.G., Munn, J.A., Narayanan, V.K., Nash, T., Neilsen, E., Neswold, R., Newberg, H.J., Nichol, R.C., Nicinski, T., Nonino, M., Okada, N., Okamura, S., Ostriker, J.P., Owen, R., Pauls, A.G., Peoples, J., Peterson, R.L., Petravick, D., Pier, J.R., Pope, A., Pordes, R., Prosapio, A., Rechenmacher, R., Quinn, T.R., Richards, G.T., Richmond, M.W., Rivetta, C.H., Rockosi, C.M., Ruthmansdorfer, K., Sandford, D., Schlegel, D.J., Schneider, D.P., Sekiguchi, M., Sergey, G., Shimasaku, K., Siegmund, W.A., Smee, S., Smith, J.A., Snedden, S., Stone, R., Stoughton, C., Strauss, M.A., Stubbs, C., SubbaRao, M., Szalay, A.S., Szapudi, I., Szokoly, G.P., Thakar, A.R., Tremonti, C., Tucker, D.L., Uomoto, A., Vanden Berk, D., Vogeley, M.S., Waddell, P., Wang, S.I., Watanabe, M., Weinberg, D.H., Yanny, B., Yasuda, N.: SDSS Collaboration: The sloan figital sky survey: technical summary. AJ 120(3), 1579–1587 (2000). https://doi.org/10.1086/301513

    ADS  Article  Google Scholar 

  74. Zanutta, A., Atkinson, D., Baldini, V., et al.: CUBES Phase-A design overview. ExA in press as part of the CUBES Special Issue(2021)

Download references

Acknowledgements

SB is supported by Russian Science Foundation grant 18-12-00301. PN is supported by the French Agence Nationale de la Recherche under grant ANR-17-CE31-0011 (“HIH2”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Balashev.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balashev, S.A., Noterdaeme, P. Molecular hydrogen in absorption at high redshifts. Exp Astron (2022). https://doi.org/10.1007/s10686-022-09843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-022-09843-y

Keywords

  • Molecular hydrogen
  • Quasar absorption lines
  • Active galactic nuclei