Skip to main content
Log in

Astronomical big data processing using machine learning: A comprehensive review

  • Review Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Astronomy, being one of the oldest observational sciences, has collected a lot of data over the ages. In recent times, it is experiencing a huge data surge due to advancements in telescopic technologies with automated digital outputs. The main driver behind this article is to present various relevant Machine Learning (ML) algorithms and big data frameworks or tools being applied and can be employed in large astronomical data-set analysis to assist astronomers in solving multiple vital intriguing problems. Throughout this survey, we attempt to review, evaluate and summarize diverse astronomical data sources, gain knowledge of structure, the complexity of the data, and challenges in the data processing. Additionally, we discuss ample technologies being developed to handle and process this voluminous data. We also look at numerous activities being carried out all over the world enriching this domain. While going through existing literature, we perceived a limited number of comprehensive studies reported so far analyzing astronomy data-sets from the viewpoint of parallel processing and machine learning collectively. This motivated us to pursue this extensive literature review task by outlining up-to-date contributions and opportunities available in this area. Besides, this article also discusses briefly a cloud-based machine learning approach to estimate the extra-galactic object redshifts considering photometric data as input features. As the intersection of big data, machine learning and astronomy is a quite new paradigm, this article will create a strong awareness among interested young scientists for future research and provide an appropriate insight on how these algorithms and tools are becoming inevitable to the astronomy community day by day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K.S., Igel, C.: Big universe, big data: Machine learning and image analysis for astronomy. IEEE Intell. Syst. https://doi.org/10.1109/mis.2017.40 (2017)

  2. Tallada, P., Carretero, J., Casals, J., Acosta-Silva, C., Serrano, S., Caubet, M., Castander, F.J., César, E., Crocce, M., Delfino, M., et al.: Cosmohub: Interactive exploration and distribution of astronomical data on hadoop. Astron. Comput., 100391 (2020)

  3. Baron, D.: Machine Learning in Astronomy: a practical overview (2019)

  4. Borne, K.D.: Astroinformatics: A 21st century approach to astronomy (2009)

  5. Wang, K., Guo, P., Yu, F.: Computational intelligence in astronomy: A survey. Int. J. Comput. Intell. Syst. 11, 575–590 (2018)

    Article  Google Scholar 

  6. Fluke, C.J., Jacobs, C.: Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. Wiley Interdisc. Rev. Data Mining Knowl. Discov 10(2), 1349 (2020)

    Article  Google Scholar 

  7. Bird, J., Petzold, L., Lubin, P., Deacon, J.: Advances in deep space exploration via simulators & deep learning. New Astron. 84, 101517 (2021)

    Article  Google Scholar 

  8. Ntampaka, M., Avestruz, C., Boada, S., Caldeira, J., Cisewski-Kehe, J., Di Stefano, R., Dvorkin, C., Evrard, A.E., Farahi, A., Finkbeiner, D., et al.: The role of machine learning in the next decade of cosmology. arXiv:1902.10159 (2019)

  9. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Modern Phys. 91(4), 045002 (2019)

    Article  ADS  Google Scholar 

  10. Navamani, T.: Efficient deep learning approaches for health informatics. In: Deep Learning and Parallel Computing Environment for Bioengineering Systems, pp 123–137. Elsevier (2019)

  11. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer, J.S.: A survey on distributed machine learning. ACM Comput. Surv. (CSUR) 53(2), 1–33 (2020)

    Article  Google Scholar 

  12. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  13. Mehta, P., Bukov, M., Wang, C.-H., Day, A.G., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ball, N.M., Brunner, R.J.: Data mining and machine learning in astronomy. Int. J. Modern Phys. D 19(07), 1049–1106 (2010). https://doi.org/10.1142/s0218271810017160

    Article  ADS  MATH  Google Scholar 

  15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  16. C.J., B.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  ADS  Google Scholar 

  17. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    MATH  Google Scholar 

  18. Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  19. Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Abe, S.: Support Vector Machines for Pattern Classification, vol. 2. Springer, New York (2005)

    Google Scholar 

  22. Lin, C.-F., Wang, S.-D.: Fuzzy support vector machines with automatic membership setting. Support vector machines: Theory and applications, 233–254 (2005)

  23. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)

    MATH  Google Scholar 

  24. Fix, E.: Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties. USAF School of Aviation Medicine (1951)

  25. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  26. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Article  Google Scholar 

  27. Dasarathy, B.V.: Nearest neighbor (nn) norms: Nn pattern classification techniques. IEEE Comput. Soc. Tutorial (1991)

  28. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-neighbor methods in learning and vision. IEEE Trans. Neural Netw. 19(2), 377 (2008)

    Article  Google Scholar 

  29. Beitia-Antero, L., Yáñez, J., de Castro, A.I.G.: On the use of logistic regression for stellar classification. Exp. Astron. 45(3), 379–395 (2018)

    Article  ADS  Google Scholar 

  30. Carliles, S., Budavári, T., Heinis, S., Priebe, C., Szalay, A.S.: Random forests for photometric redshifts. Astrophys. J. 712(1), 511 (2010)

    Article  ADS  Google Scholar 

  31. Baron, D., Poznanski, D.: The weirdest sdss galaxies: results from an outlier detection algorithm. Mon. Not. R. Astron. Soc. 465(4), 4530–4555 (2017)

    Article  ADS  Google Scholar 

  32. Cao, H., Bastieri, D., Rando, R., Urso, G., Luo, G., Paccagnella, A.: Machine learning on compton event identification for a nano-satellite mission. Exp. Astron. 47(1), 129–144 (2019)

    Article  ADS  Google Scholar 

  33. Steinhaus, H.: Sur la division des corps materiels en parties. bull. acad. polon. sci., c1. iii vol iv: 801-804 (1956)

  34. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp 281–297, Oakland, CA, USA (1967)

  35. Ward Jr, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  36. Parzen, E.: On estimation of a probability density function and mode. Ann Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  37. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, vol. 3. Wiley, New York (1973)

    Google Scholar 

  38. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, Boca Raton (1986)

    MATH  Google Scholar 

  39. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, New York (2015)

    MATH  Google Scholar 

  40. Taylor, C.: Classification and kernel density estimation. Vistas Astron. 41(3), 411–417 (1997)

    Article  ADS  Google Scholar 

  41. Wasserman, L.: All of Statistics: a Concise Course in Statistical Inference. Springer, New York (2013)

    MATH  Google Scholar 

  42. Klemelä, J.S.: Smoothing of Multivariate Data: Density Estimation and Visualization, vol. 737. John Wiley & Sons, New York (2009)

    Book  MATH  Google Scholar 

  43. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kohonen, T.: An overview of som literature. In: Self-Organizing Maps, pp 347–371. Springer (2001)

  45. Galvin, T.J., Huynh, M., Norris, R.P., Wang, X.R., Hopkins, E., Wong, O., Shabala, S., Rudnick, L., Alger, M.J., Polsterer, K.L.: Radio galaxy zoo: Knowledge transfer using rotationally invariant self-organizing maps. Publ. Astron. Soc. Pac. 131(1004), 108009 (2019)

    Article  ADS  Google Scholar 

  46. Wilson, D., Nayyeri, H., Cooray, A., Häußler, B.: Photometric redshift estimation with galaxy morphology using self-organizing maps. Astrophys. J. 888(2), 83 (2020)

    Article  ADS  Google Scholar 

  47. Gomes, Z., Jarvis, M.J., Almosallam, I.A., Roberts, J.S.: Improving photometric redshift estimation using gpz: size information, post processing, and improved photometry. Mon. Not. R. Astron. Soc. 475, 331–342 (2018)

    Article  ADS  Google Scholar 

  48. Boroson, T.A., Green, R.F.: The emission-line properties of low-redshift quasi-stellar objects. Astrophys. J. Suppl. Ser. 80, 109–135 (1992)

    Article  ADS  Google Scholar 

  49. Djorgovski, S.: The fundamental plane correlations for globular clusters. Astrophys. J. 438, 29–32 (1995)

    Article  ADS  Google Scholar 

  50. Govada, A., Sahay, S.K.: A communication efficient and scalable distributed data mining for the astronomical data. Astron. Comput. 16, 166–173 (2016)

    Article  ADS  Google Scholar 

  51. Collister, A.A., Lahav, O.: Annz: estimating photometric redshifts using artificial neural networks. Publ. Astron Soc Pac. 116(818), 345 (2004)

    Article  ADS  Google Scholar 

  52. Sadeh, I., Abdalla, F.B., Lahav, O.: Annz2: photometric redshift and probability distribution function estimation using machine learning. Publ. Astron Soc Pac. 128(968), 104502 (2016)

    Article  ADS  Google Scholar 

  53. Angel, J.R.P., Wizinowich, P., Lloyd-Hart, M., Sandler, D.: Adaptive optics for array telescopes using neural-network techniques. Nature 348(6298), 221–224 (1990)

    Article  ADS  Google Scholar 

  54. Bazell, D., Peng, Y.: A comparison of neural network algorithms and preprocessing methods for star-galaxy discrimination. Astrophys. J. Suppl. Ser. 116(1), 47 (1998)

    Article  ADS  Google Scholar 

  55. Andrešič, D., Šaloun, P., Pečíková, B.: Large astronomical time series pre-processing for classification using artificial neural networks. In: Intelligent Astrophysics, pp 265–293. Springer (2021)

  56. Barrientos, A., Holdship, J., Solar, M., Martín, S., Rivilla, V.M., Viti, S., Mangum, J., Harada, N., Sakamoto, K., Muller, S., et al.: Towards the prediction of molecular parameters from astronomical emission lines using neural networks. Exp. Astron., 1–26 (2021)

  57. Hinners, T.A., Tat, K., Thorp, R.: Machine learning techniques for stellar light curve classification. Astron. J. 156(1), 7 (2018)

    Article  ADS  Google Scholar 

  58. Muthukrishna, D., Lochner, M., Webb, S.: Real-time detection of anomalies in large-scale transient surveys (2019)

  59. Barchi, P., de Carvalho, R., Rosa, R., Sautter, R., Soares-Santos, M., Marques, B., Clua, E., Gonçalves, T., de Sá-Freitas, C., Moura, T.: Machine and deep learning applied to galaxy morphology-a comparative study. Astron. Comput. 30, 100334 (2020)

    Article  Google Scholar 

  60. González, R.E., Munoz, R.P., Hernández, C.A.: Galaxy detection and identification using deep learning and data augmentation. Astron. Comput. 25, 103–109 (2018)

    Article  ADS  Google Scholar 

  61. Cacho Martínez, R.: Distant galaxies analysis with deep neural networks. http://hdl.handle.net/10609/107807 (2020)

  62. Hoyle, B., Rau, M.M., Bonnett, C., Seitz, S., Weller, J.: Data augmentation for machine learning redshifts applied to sloan digital sky survey galaxies. Mon. Not. R. Astron. Soc. 450(1), 305–316 (2015)

    Article  ADS  Google Scholar 

  63. Iten, R., Metger, T., Wilming, H., Del Rio, L., Renner, R.: Discovering physical concepts with neural networks. Phys. Rev. Lett. 124(1), 010508 (2020)

    Article  ADS  Google Scholar 

  64. Sedaghat, N., Romaniello, M., Carrick, J.E., Pineau, F.-X.: Machines learn to infer stellar parameters just by looking at a large number of spectra. Mon. Not. R. Astron. Soc. 501(4), 6026–6041 (2021)

    Article  ADS  Google Scholar 

  65. Mu, Y.-H., Qiu, B., Zhang, J.-N., Ma, J.-C., Fan, X.-D.: Photometric redshift estimation of galaxies with convolutional neural network. Res. Astron. Astrophys. 20(6), 089 (2020)

    Article  ADS  Google Scholar 

  66. Schawinski, K., Turp, D., Zhang, C.: Exploring galaxy evolution with latent space walks. AAS 231, 309–01 (2018)

    Google Scholar 

  67. Ribli, D., Pataki, B.Á., Zorrilla Matilla, J.M., Hsu, D., Haiman, Z., Csabai, I.: Weak lensing cosmology with convolutional neural networks on noisy data. Mon. Not. R. Astron. Soc. 490(2), 1843–1860 (2019)

    Article  ADS  Google Scholar 

  68. Yue, Y., Cao, Z., Gu, H., Wang, X.: Dynamic simulation and parameter fitting method of cometary dust based on machine learning. Exp. Astro, 1–34 (2021)

  69. Hezaveh, Y.D., Levasseur, L.P., Marshall, P.J.: Fast automated analysis of strong gravitational lenses with convolutional neural networks. Nature 548(7669), 555–557 (2017)

    Article  ADS  Google Scholar 

  70. Pearson, J., Pennock, C., Robinson, T.: Auto-detection of strong gravitational lenses using convolutional neural networks. Emergent Sci. 2, 1 (2018)

    Article  Google Scholar 

  71. Schaefer, C., Geiger, M., Kuntzer, T., Kneib, J.-P.: Deep convolutional neural networks as strong gravitational lens detectors. Astron. Astrophys. 611, 2 (2018)

    Article  ADS  Google Scholar 

  72. Lanusse, F., Ma, Q., Li, N., Collett, T.E., Li, C.-L., Ravanbakhsh, S., Mandelbaum, R., Póczos, B.: Cmu deeplens: deep learning for automatic image-based galaxy–galaxy strong lens finding. Mon. Not. R. Astron. Soc. 473(3), 3895–3906 (2018)

    Article  ADS  Google Scholar 

  73. Sedaghat, N., Mahabal, A.: Effective image differencing with convolutional neural networks for real-time transient hunting. Mon. Not. R. Astron. Soc. 476(4), 5365–5376 (2018)

    Article  ADS  Google Scholar 

  74. Sadeh, I.: Deep learning detection of transients. arXiv:1902.03620 (2019)

  75. Mong, Y.-L., Ackley, K., Galloway, D., Killestein, T., Lyman, J., Steeghs, D., Dhillon, V., O’Brien, P., Ramsay, G., Poshyachinda, S., et al.: Machine learning for transient recognition in difference imaging with minimum sampling effort. Mon. Not. R. Astron. Soc. 499(4), 6009–6017 (2020)

    Article  ADS  Google Scholar 

  76. Agrawal, S., Basak, S., Saha, S., Rosario-Franco, M., Routh, S., Bora, K., Theophilus, A.J.: A comparative study in classification methods of exoplanets: Machine learning exploration via mining and automatic labeling of the habitability catalog (2015)

  77. Basak, S., Agrawal, S., Saha, S., Theophilus, A.J., Bora, K., Deshpande, G., Murthy, J.: Habitability classification of exoplanets: a machine learning insight. arXiv:1805.08810 (2018)

  78. Viquar, M., Basak, S., Dasgupta, A., Agrawal, S., Saha, S.: Machine learning in astronomy: A case study in quasar-star classification. In: Emerging Technologies in Data Mining and Information Security, pp 827–836. Springer (2019)

  79. Saha, S., Nagaraj, N., Mathur, A., Yedida, R.: Evolution of novel activation functions in neural network training with applications to classification of exoplanets. arXiv:1906.01975 (2019)

  80. Saha, S., Mathur, A., Bora, K., Agrawal, S., Basak, S.: Sbaf: A new activation function for artificial neural net based habitability classification. arXiv:1806.01844 (2018)

  81. Bora, K., Saha, S., Agrawal, S., Safonova, M., Routh, S., Narasimhamurthy, A.: Cd-hpf: New habitability score via data analytic modeling. Astron. Comput. 17, 129–143 (2016)

    Article  ADS  Google Scholar 

  82. Theophilus, A., Saha, S., Basak, S., Murthy, J.: A novel exoplanetary habitability score via particle swarm optimization of ces production functions. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp 2139–2147. IEEE (2018)

  83. Saha, S., Basak, S., Safonova, M., Bora, K., Agrawal, S., Sarkar, P., Murthy, J.: Theoretical validation of potential habitability via analytical and boosted tree methods: An optimistic study on recently discovered exoplanets. Astron. Comput. 23, 141–150 (2018)

    Article  ADS  Google Scholar 

  84. Khaidem, L., Saha, S., Kar, S., Saha, S., Basak, S.: Quantifying exoplanet habitability via penalized multi-objective optimization (2019)

  85. Basak, S., Saha, S., Mathur, A., Bora, K., Makhija, S., Safonova, M., Agrawal, S.: Ceesa meets machine learning: A constant elasticity earth similarity approach to habitability and classification of exoplanets. Astron. Comput. 30, 100335 (2020)

    Article  Google Scholar 

  86. Heitmann, K., Bingham, D., Lawrence, E., Bergner, S., Habib, S., Higdon, D., Pope, A., Biswas, R., Finkel, H., Frontiere, N., et al.: The mira–titan universe: precision predictions for dark energy surveys. Astrophys. J. 820(2), 108 (2016)

    Article  ADS  Google Scholar 

  87. Varma, V., Field, S.E., Scheel, M.A., Blackman, J., Kidder, L.E., Pfeiffer, H.P.: Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. D 99(6), 064045 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  88. Ford, E.B., Moorhead, A.V., Veras, D., et al.: A bayesian surrogate model for rapid time series analysis and application to exoplanet observations. Bayesian Anal. 6(3), 475–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  89. Khan, S., Green, R.: Gravitational-wave surrogate models powered by artificial neural networks: The ann-sur for waveform generation. arXiv:2008.12932 (2020)

  90. Aricò, G., Angulo, R.E., Hernández-Monteagudo, C., Contreras, S., Zennaro, M., Pellejero-Ibañez, M., Rosas-Guevara, Y.: Modelling the large-scale mass density field of the universe as a function of cosmology and baryonic physics. Mon. Not. R. Astron. Soc. 495(4), 4800–4819 (2020)

    Article  ADS  Google Scholar 

  91. Blanchard, A., Camera, S., Carbone, C., Cardone, V., Casas, S., Clesse, S., Ilić, S., Kilbinger, M., Kitching, T., Kunz, M., et al.: Euclid preparation-vii. forecast validation for euclid cosmological probes. Astron. Astrophys. 642, 191 (2020)

    Article  Google Scholar 

  92. Collaboration, E., Knabenhans, M., Stadel, J., Marelli, S., Potter, D., Teyssier, R., Legrand, L., Schneider, A., Sudret, B., Blot, L., et al.: Euclid preparation: Ii. the euclidemulator–a tool to compute the cosmology dependence of the nonlinear matter power spectrum. Mon. Not. R. Astron. Soc. 484(4), 5509–5529 (2019)

    Article  ADS  Google Scholar 

  93. Skilling, J., et al.: Nested sampling for general bayesian computation. Bayesian Anal. 1(4), 833–859 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  94. Feroz, F., Hobson, M.P.: Multimodal nested sampling: an efficient and robust alternative to markov chain monte carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384(2), 449–463 (2008)

    Article  ADS  Google Scholar 

  95. Speagle, J.S.: dynesty: a dynamic nested sampling package for estimating bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493(3), 3132–3158 (2020)

    Article  ADS  Google Scholar 

  96. Graff, P., Feroz, F., Hobson, M.P., Lasenby, A.: Neural networks for astronomical data analysis and bayesian inference. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp 16–23. IEEE (2013)

  97. Higson, E., Handley, W., Hobson, M., Lasenby, A.: Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29(5), 891–913 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  98. Brewer, B.J., Pártay, L.B., Csányi, G.: Diffusive nested sampling. Stat. Comput. 21(4), 649–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  99. Akeret, J., Refregier, A., Amara, A., Seehars, S., Hasner, C.: Approximate bayesian computation for forward modeling in cosmology. J. Cosmol. Astropart. Phys. 2015(08), 043 (2015)

    Article  Google Scholar 

  100. Taylor, P.L., Kitching, T.D., Alsing, J., Wandelt, B.D., Feeney, S.M., McEwen, J.D.: Cosmic shear: Inference from forward models. Phys. Rev. D 100(2), 023519 (2019)

    Article  ADS  Google Scholar 

  101. Savage, R.S., Oliver, S.: Bayesian methods of astronomical source extraction. Astrophys. J. 661(2), 1339 (2007)

    Article  ADS  Google Scholar 

  102. Rogers, K.K., Peiris, H.V., Pontzen, A., Bird, S., Verde, L., Font-Ribera, A.: Bayesian emulator optimisation for cosmology: application to the lyman-alpha forest. J. Cosmol. Astropart. Phys. 2019(02), 031 (2019)

    Article  MathSciNet  Google Scholar 

  103. Ishida, E., Vitenti, S., Penna-Lima, M., Cisewski, J., de Souza, R., Trindade, A., Cameron, E., Busti, V., collaboration, C., et al.: Cosmoabc: likelihood-free inference via population monte carlo approximate bayesian computation. Astron. Comput. 13, 1–11 (2015)

    Article  ADS  Google Scholar 

  104. Cameron, E., Pettitt, A.: Approximate bayesian computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift. Mon. Not. R. Astron. Soc. 425(1), 44–65 (2012)

    Article  ADS  Google Scholar 

  105. Leclercq, F.: Bayesian optimization for likelihood-free cosmological inference. Phys. Rev. D 98(6), 063511 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  106. Pellejero-Ibañez, M., Angulo, R.E., Aricó, G., Zennaro, M., Contreras, S., Stücker, J: Cosmological parameter estimation via iterative emulation of likelihoods. Mon. Not. R. Astron. Soc. 499(4), 5257–5268 (2020)

    Article  ADS  Google Scholar 

  107. Gao, G., Jiang, H., Vink, J.C., Chen, C., El Khamra, Y., Ita, J.J.: Gaussian mixture model fitting method for uncertainty quantification by conditioning to production data. Comput. Geosc, 1–19 (2019)

  108. Kristiadi, A., Däubener, S., Fischer, A.: Predictive uncertainty quantification with compound density networks. arXiv:1902.01080 (2019)

  109. Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification. J. Comput. Phys. 366, 415–447 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. Goyal, J.M., Wakeford, H.R., Mayne, N.J., Lewis, N.K., Drummond, B., Sing, D.K: Fully scalable forward model grid of exoplanet transmission spectra. Mon. Not. R. Astron. Soc. 482(4), 4503–4513 (2019)

    Article  ADS  Google Scholar 

  111. Schmidt, F., Elsner, F., Jasche, J., Nguyen, N.M., Lavaux, G.: A rigorous eft-based forward model for large-scale structure. J. Cosmol. Astropart. Phys. 2019(01), 042 (2019)

    Article  MathSciNet  Google Scholar 

  112. Bailer-Jones, C.A: The ilium forward modelling algorithm for multivariate parameter estimation and its application to derive stellar parameters from gaia spectrophotometry. Mon. Not. R. Astron. Soc. 403(1), 96–116 (2010)

    Article  ADS  Google Scholar 

  113. Sartori, L.F., Trakhtenbrot, B., Schawinski, K., Caplar, N., Treister, E., Zhang, C.: A forward modeling approach to agn variability–method description and early applications. Astrophys. J. 883(2), 139 (2019)

    Article  ADS  Google Scholar 

  114. Hu, F.-M., Jiang, M.-H: The fuzzy classification of the solar cycle and the prediction for the 22nd solar cycle. ChJSS 5, 237–244 (1985)

    ADS  Google Scholar 

  115. Metcalfe, T.S: Genetic-algorithm-based light-curve optimization applied to observations of the w ursae majoris star bh cassiopeiae. Astron. J 117 (5), 2503 (1999)

    Article  ADS  Google Scholar 

  116. Ordóñez, D., Dafonte, C., Manteiga, M., Arcay, B.: Parameterization of rvs synthetic stellar spectra for the esa gaia mission: Study of the optimal domain for ann training. Expert Syst. Appl. 37(2), 1719–1727 (2010)

    Article  Google Scholar 

  117. Spiekermann, G.: Automated morphological classification of faint galaxies. In: Digitised Optical Sky Surveys, pp 209–213. Springer (1992)

  118. Dumitrescu, A., Pop, A., Dumitrescu, D.: Structural properties of pulsating star light curves through fuzzy divisive hierarchical clustering. Astrophys. Space Sci. 250(2), 205–226 (1997)

    Article  ADS  Google Scholar 

  119. Rodrıéguez, A., Arcay, B., Dafonte, C., Manteiga, M., Carricajo, I.: Automated knowledge-based analysis and classification of stellar spectra using fuzzy reasoning. Expert Syst. Appl. 27(2), 237–244 (2004)

    Article  Google Scholar 

  120. Liu, Z.-B., Gao, Y.-Y., Wang, J.-Z., et al.: Automatic classification method of star spectra data based on manifold fuzzy twin support vector machine. Spectrosc. Spectr. Anal. 35(1), 263–266 (2015)

    Google Scholar 

  121. Revathy, K., Lekshmi, S., Nayar, S.P: Fractal-based fuzzy technique for detection of active regions from solar images. Solar Phys. 228(1-2), 43–53 (2005)

    Article  ADS  Google Scholar 

  122. Freistetter, F.: Fuzzy characterization of near-earth-asteroids. Celest. Mech. Dyn. Astron. 104(1-2), 93–102 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Shamir, L., Nemiroff, R.J: Astronomical pipeline processing using fuzzy logic. Appl. Soft Comput. 8(1), 79–87 (2008)

    Article  Google Scholar 

  124. Attia, A.-F: Hierarchical fuzzy controllers for an astronomical telescope tracking. Appl. Soft Comput. 9(1), 135–141 (2009)

    Article  Google Scholar 

  125. Charbonneau, P.: Genetic algorithms in astronomy and astrophysics. Astrophys. J. Suppl. Ser. 101, 309 (1995)

    Article  ADS  Google Scholar 

  126. Jin-shu, H.: Parameter estimation of stellar population synthesis using a combined genetic algorithm. Chin. Astron. Astrophys. 39(4), 454–465 (2015)

    Article  ADS  Google Scholar 

  127. Oussous, A., Benjelloun, F.-Z., Lahcen, A.A., Belfkih, S.: Big data technologies: A survey. J. King Saud Univ.-Comput Inf. Sci. 30(4), 431–448 (2018)

    Google Scholar 

  128. Furht, B., Villanustre, F.: Introduction to big data. In: Big Data Technologies and Applications, pp 3–11. Springer (2016)

  129. Kapil, G., Agrawal, A., Khan, R.: A study of big data characteristics. In: 2016 International Conference on Communication and Electronics Systems (ICCES), pp 1–4. IEEE (2016)

  130. York, D.G., Adelman, J., Anderson Jr, J.E., Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J., Barkhouser, R., Bastian, S., Berman, E., et al.: The sloan digital sky survey: Technical summary. Astron. J. 120(3), 1579 (2000)

    Article  ADS  Google Scholar 

  131. Alam, S., Albareti, F.D., Prieto, C.A., Anders, F., Anderson, S.F., Anderton, T., Andrews, B.H., Armengaud, E., Aubourg, É., Bailey, S., et al.: The eleventh and twelfth data releases of the sloan digital sky survey: final data from sdss-iii. Astrophys. J. Suppl. Ser. 219, 12 (2015)

    Article  ADS  Google Scholar 

  132. Vipers:the vimos public extragalactic redshift survey. http://vipers.inaf.it (2020)

  133. Guzzo, L., Scodeggio, M., Garilli, B., Granett, B., Fritz, A., Abbas, U., Adami, C., Arnouts, S., Bel, J., Bolzonella, M., et al.: The vimos public extragalactic redshift survey (vipers)-an unprecedented view of galaxies and large-scale structure at 0.5< z< 1.2. Astron. Astrophys. 566, 108 (2014)

    Article  Google Scholar 

  134. Manzoni, G., Scodeggio, M., Baugh, C., Norberg, P., De Lucia, G., Fritz, A., Haines, C., Zamorani, G., Gargiulo, A., Guzzo, L., et al.: Modelling the quenching of star formation activity from the evolution of the colour-magnitude relation in vipers. New Astron. 84, 101515 (2021)

    Article  Google Scholar 

  135. The Two Micron All Sky Survey at IPAC. https://old.ipac.caltech.edu/2mass/ (As on June, 2020)

  136. Conselice, C., Bundy, K., Trujillo, I., Coil, A., Eisenhardt, P., Ellis, R., Georgakakis, A., Huang, J., Lotz, J., Nandra, K., et al.: The properties and evolution of a k-band selected sample of massive galaxies at z 0.4–2 in the palomar/deep2 survey. Mon. Not. R. Astron. Soc. 381(3), 962–986 (2007)

    Article  ADS  Google Scholar 

  137. The large synoptic survey telescope. https://www.lsst.org/lsst (2020)

  138. SKA in India: science with big data. https://asi2020.astron-soc.in/workshops/workshop3/ (As on July, 2020)

  139. Ligolaser interferometer gravitational-wave observatory. https://www.ligo.caltech.edu (As on June, 2020)

  140. Fevre, O.L., Cassata, P., Cucciati, O., Garilli, B., Ilbert, O., Brun, V.L., Maccagni, D., Moreau, C., Scodeggio, M., Tresse, L., et al.: The vimos vlt deep survey final data release: a spectroscopic sample of 35016 galaxies and agn out to z˜ 6.7 selected with 17.5<= i_ {AB} <= 24.7. arXiv:1307.0545 (2013)

  141. Lawrence, A., Warren, S., Almaini, O., Edge, A., Hambly, N., Jameson, R., Lucas, P., Casali, M., Adamson, A., Dye, S., et al.: The ukirt infrared deep sky survey (ukidss). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007)

    Article  ADS  Google Scholar 

  142. Pović, M., Huertas-Company, M., Aguerri, J., Márquez, I., Masegosa, J., Husillos, C., Molino, A., Cristóbal-Hornillos, D., Perea, J., Benítez, N., et al.: The alhambra survey: reliable morphological catalogue of 22 051 early-and late-type galaxies. Mon. Not. R. Astron. Soc. 435(4), 3444–3461 (2013)

    Article  ADS  Google Scholar 

  143. Djorgovski, S., Gal, R., Odewahn, S., De Carvalho, R., Brunner, R., Longo, G., Scaramella, R.: The palomar digital sky survey (dposs). arXiv:astro-ph/9809187 (1998)

  144. Lintott, C.J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M.J., Nichol, R.C., Szalay, A., Andreescu, D., et al.: Galaxy zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky survey. Mon. Not. R. Astron. Soc. 389(3), 1179–1189 (2008)

    Article  ADS  Google Scholar 

  145. Cutri, R.e., Wright, E., Conrow, T., Fowler, J., Eisenhardt, P., Grillmair, C., Kirkpatrick, J., Masci, F., McCallon, H., Wheelock, S., et al.: Vizier online data catalog: Allwise data release (cutri+ 2013). VizieR Online Data Catalog, 328 (2021)

  146. de Jong, J.T., Kleijn, G.A.V., Kuijken, K.H., Valentijn, E.A., et al.: The kilo-degree survey. Exp. Astron. 35(1-2), 25–44 (2013)

    Article  ADS  Google Scholar 

  147. Zhang, Y., Zhao, Y.: Astronomy in the big data era. Data Sci. J. 14 (2015)

  148. Wells, D.C., Greisen, E.W: Fits-a flexible image transport system. In: Image Processing in Astronomy, p 445 (1979)

  149. Anderson, K., Alexov, A., Baehren, L., Grießmeier, J.-M., Wise, M., Renting, A.: Lofar and hdf5: Toward a new radio data standard. arXiv:1012.2266 (2010)

  150. Goucher, G., Love, J., Leckner, H.: A discipline independent scientific data management package-the national space science common data format (cdf). step, 691 (1994)

  151. Warren-Smith, R., Lawden, M., McIlwrath, B., Jenness, T., Draper, P.: Hds heirarchical data system: Programmer’s manual. Technical report, Technical Report. Council for the Central Laboratory of the Research … (2008)

  152. Williams, R., Ochsenbein, F., Davenhall, C., Durand, D., Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Szalay, A., Wicenec, A.: Votable: A proposed xml format for astronomical tables. CDS: Strasbourg 28 (2002)

  153. Thomas, B., Shaya, E., Gass, J., Blackwell, J., Cheung, C.: An xml representation of fits-introducing fitsml. AAS 197, 116–03 (2000)

    Google Scholar 

  154. Greenfield, P., Droettboom, M., Bray, E.: Asdf: A new data format for astronomy. Astron. Comput. 12, 240–251 (2015)

    Article  ADS  Google Scholar 

  155. Patidar, S., Rane, D., Jain, P.: A survey paper on cloud computing. In: 2012 Second International Conference on Advanced Computing & Communication Technologies, pp 394–398. IEEE (2012)

  156. Berriman, G.B., Juve, G., Deelman, E., Regelson, M., Plavchan, P.: The application of cloud computing to astronomy: A study of cost and performance. In: 2010 Sixth IEEE International Conference on e-Science Workshops, pp 1–7. IEEE (2010)

  157. Araya, M., Osorio, M., Díaz, M., Ponce, C., Villanueva, M., Valenzuela, C., Solar, M.: Jovial: Notebook-based astronomical data analysis in the cloud. Astron. Comput. 25, 110–117 (2018)

    Article  ADS  Google Scholar 

  158. Grid computing to tackle the mystery of the dark universe. https://astronomynow.com/2016/11/26/grid-computing-to-tackle-the-mystery-of-the-dark-universe/ (As on December, 2020)

  159. Spark. http://spark.apache.org/ (As on June, 2020)

  160. Flume. https://flume.apache.org/ (As on June, 2020)

  161. Apache Pig. https://pig.apache.org/ (As on June, 2020)

  162. Apache Oozie. https://oozie.apache.org/ (As on June, 2020)

  163. Statwing. https://www.statwing.com/ (As on June, 2020)

  164. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: Scidb: A database management system for applications with complex analytics. Comput. Sci. Eng. 15(3), 54–62 (2013)

    Article  Google Scholar 

  165. Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A., Curino, C.: Apache tez: A unifying framework for modeling and building data processing applications. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 1357–1369 (2015)

  166. Parallel supercomputing for astronomy

  167. Liu, L., Liu, D., Lü, S., Zhang, P.: An abstract description method of map-reduce-merge using haskell. Math. Probl. Eng. 2013 (2013)

  168. Zhou, L., Huang, M.: Challenges of software testing for astronomical big data. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp 529–532. IEEE (2017)

  169. Szalay, A.S., Gray, J., Kunszt, P., Thakar, A., Slutz, D.: Large databases in astronomy. In: Mining the Sky, pp 99–116. Springer (2001)

  170. Brahem, M., Zeitouni, K., Yeh, L.: Astroide: a unified astronomical big data processing engine over spark. IEEE Trans. Big Data (2018)

  171. Jacob, J.C., Katz, D.S., Miller, C.D., et al.: Grist: Grid-based Data Mining for Astronomy, Astronomical Data Analysis Software and Systems XIV, ASP Conference Series, Vol. XXX (2005)

  172. Ivanova, M., Nes, N., Goncalves, R., Kersten, M.: Monetdb/sql meets skyserver: the challenges of a scientific database. In: 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007), pp 13–13. IEEE (2007)

  173. Juric, M.: Large survey database: A distributed framework for storage and analysis of large datasets. AAS 217, 433–19 (2011)

    Google Scholar 

  174. Wiley, K., Connolly, A., Gardner, J., Krughoff, S., Balazinska, M., Howe, B., Kwon, Y., Bu, Y.: Astronomy in the cloud: using mapreduce for image co-addition. Publ. Astron. Soc. Pac. 123(901), 366 (2011)

    Article  ADS  Google Scholar 

  175. Brahem, M., Zeitouni, K., Yeh, L.: Hx-match: In-memory cross-matching algorithm for astronomical big data. In: International Symposium on Spatial and Temporal Databases, pp 411–415. Springer (2017)

  176. Brahem, M., Lopes, S., Yeh, L., Zeitouni, K.: Astrospark: towards a distributed data server for big data in astronomy. In: Proceedings of the 3rd ACM SIGSPATIAL PhD Symposium, pp 1–4 (2016)

  177. Zhang, Z., Barbary, K., Nothaft, F.A., Sparks, E.R., Zahn, O., Franklin, M.J., Patterson, D.A., Perlmutter, S.: Kira: Processing astronomy imagery using big data technology. IEEE Trans. Big Data (2016)

  178. Zečević, P., Slater, C.T., Jurić, M., Connolly, A.J., Lončarić, S., Bellm, E.C., Golkhou, V.Z., Suberlak, K.: Axs: A framework for fast astronomical data processing based on apache spark. Astron. J. 158 (1), 37 (2019)

    Article  ADS  Google Scholar 

  179. Garofalo, M., Botta, A., Ventre, G.: Astrophysics and big data: Challenges, methods, and tools. Proc. Int. Astron. Union 12(S325), 345–348 (2016)

    Article  Google Scholar 

  180. Ball, N.M.: Canfar+ skytree: A cloud computing and data mining system for astronomy. arXiv:1312.3996 (2013)

  181. Hong, S., Jeong, D., Hwang, H.S., Kim, J., Hong, S.E., Park, C., Dey, A., Milosavljevic, M., Gebhardt, K., Lee, K.-S: Constraining cosmology with big data statistics of cosmological graphs. Mon. Not. R. Astron. Soc. 493(4), 5972–5986 (2020)

    Article  ADS  Google Scholar 

  182. Vujčić, V., Jevremović, D: Real-time stream processing in astronomy. In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, pp 173–182. Elsevier (2020)

  183. Sciacca, E., Pistagna, C., Becciani, U., Costa, A., Massimino, P., Riggi, S., Vitello, F., Bandieramonte, M., Krokos, M.: Towards a big data exploration framework for astronomical archives. In: 2014 International Conference on High Performance Computing & Simulation (HPCS). IEEE, pp 351–357 (2014)

  184. Fillatre, L., Lepiller, D.: Processing solutions for big data in astronomy. EAS Publ. Ser. 78, 179–208 (2016)

    Article  Google Scholar 

  185. Zhao, Q., Sun, J., Yu, C., Cui, C., Lv, L., Xiao, J.: A paralleled large-scale astronomical cross-matching function. In: International Conference on Algorithms and Architectures for Parallel Processing, pp 604–614. Springer (2009)

  186. Mesmoudi, A., Hacid, M.-S., Toumani, F.: Benchmarking sql on mapreduce systems using large astronomy databases. Distrib. Parallel Databases 34(3), 347–378 (2016)

    Article  Google Scholar 

  187. Peloton, J., Arnault, C., Plaszczynski, S.: Analyzing astronomical data with apache spark. arXiv:1804.07501 (2018)

  188. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: Efficient in-memory spatial analytics. In: Proceedings of the 2016 International Conference on Management of Data, pp 1071–1085 (2016)

  189. Wei, S., Wang, F., Deng, H., Liu, C., Dai, W., Liang, B., Mei, Y., Shi, C., Liu, Y., Wu, J.: Opencluster: a flexible distributed computing framework for astronomical data processing. Publ. Astron Soc Pac. 129(972), 024001 (2016)

    Article  ADS  Google Scholar 

  190. Berriman, G.B., Good, J.: The application of the montage image mosaic engine to the visualization of astronomical images. Publ. Astron. Soc. Pac. 129(975), 058006 (2017)

    Article  ADS  Google Scholar 

  191. Corizzo, R., Ceci, M., Zdravevski, E., Japkowicz, N.: Scalable auto-encoders for gravitational waves detection from time series data. Expert Syst. Appl., 113378 (2020)

  192. Sen, S., Saha, S., Chakraborty, P., Singh, K.P: Implementation of neural network regression model for faster redshift analysis on cloud-based spark platform. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp 591–602. Springer (2021)

  193. Vanderplas, J.T., Connolly, ž, Ivezić, A.J., Gray, A.: Introduction to astroml: Machine learning for astrophysics, pp. 47–54. https://doi.org/10.1109/CIDU.2012.6382200 (2012)

  194. Saha, S., Agrawal, S., R, M., Bora, K., Routh, S., Narasimhamurthy, A.: ASTROMLSKIT: a new statistical machine learning toolkit: a platform for data analytics in astronomy (2015)

  195. Astropy. https://www.astropy.org/ (As on June, 2020)

  196. González, R.E., Muñoz, R.P., Hernández, C.A.: Astrocv: Astronomy computer vision library. ASCL, 1804 (2018)

  197. http://astroweka.sourceforge.net/: Astroweka (Collected on June,2020)

  198. pyfits 3.3. https://pypi.org/project/pyfits/3.3/ (As on June, 2020)

  199. Singh, N., Browne, L.-M., Butler, R.: Parallel astronomical data processing with python: Recipes for multicore machines. Astron. Comput. 2, 1–10 (2013)

    Article  ADS  Google Scholar 

  200. pyraf. http://astro.if.ufrgs.br/ (As on June, 2020)

  201. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Pohorelov, A., Vlasenko, V., Dikov, E.: Colitec software for the astronomical data sets processing. In: 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), pp 227–230. IEEE (2018)

  202. Breddels, M.A., Veljanoski, J.: Vaex: big data exploration in the era of gaia. Astron. Astrophys. 618, 13 (2018)

    Article  ADS  Google Scholar 

  203. https://authors.library.caltech.edu/50265//: Dameware, a web cyberinfrastructure for astrophysical data mining (As on June, 2020)

  204. Welge, M., Hsu, W., Auvil, L., Redman, T., Tcheng, D.: High-performance knowledge discovery and data mining systems using workstation clusters. In: 12th National Conference on High Performance Networking and Computing (SC99) (1999)

  205. https://ipython.org/: Ipython interactive computing (As on June, 2020)

  206. Yu, W., Kind, M.C., Brunner, R.J: Vizic: A jupyter-based interactive visualization tool for astronomical catalogs. Astron. Comput. 20, 128–139 (2017)

    Article  ADS  Google Scholar 

  207. https://astrostatistics.psu.edu/statcodes/: Online statistical software for astronomy and related physical sciences (As on June, 2020)

  208. Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J.C., Laity, A., Deelman, E., Kesselman, C., Singh, G., Su, M.-H., Prince, T., et al.: Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking. Int. J. Comput. Sci. Eng. 4(2), 73–87 (2009)

    Google Scholar 

  209. Tools for astronomical big data. https://www.noao.edu/meetings/bigdata/ (As on July, 2020)

  210. Big data and astronomy. http://www.astro4dev.org/jan-mar-2017/ (As on July, 2020)

  211. 2nd Australia-China SKA big data workshop. https://eridanus.net.au/?p=269 (As on July, 2020)

  212. Artificial intelligence in astronomy. https://www.eso.org/sci/meetings/2019/AIA2019.html (As on July, 2020)

  213. Machine learning tools for research in astronomy. https://www2.mpia-hd.mpg.de/ml2019/ (As on July, 2020)

  214. Swiss-SA Astronomy. https://astro.ukzn.ac.za/swiss-sa-astronomy-big-data-workshop/ (As on July, 2020)

  215. Innovation in data driven astronomy. https://www.nrao.edu/meetings/bigdata/index.shtml (As on June, 2011)

  216. Data science for physics. https://www.turing.ac.uk/events/data-science-physics-and-astronomy-scoping-workshop/ (As on July, 2020)

  217. International conference on modeling, machine learning and astronomy. http://mmla.pes.edu/ (As on June, 2019)

  218. Bigdata and digital technoloy. https://indico.narit.or.th/ (As on July, 2020)

  219. Data science in astrophysics. https://dsap.iiita.ac.in/ (As on June, 2020)

  220. Machine learning in astronomical data analysis. http://hea-www.harvard.edu/AstroStat/aas233/special.html/ (As on July, 2020)

  221. Bigdata challenge. dca2019.csp.escience.cn (As on July, 2020)

  222. AstroInformatics virtual conference. https://www.astroinformatics2020.org/ (As on July, 2020)

  223. Workshop: astronomical data science. https://tamids.tamu.edu/2020 (As on July, 2020)

  224. IAU symposia. https://www.iau.org/science/meetings/future/symposia/2528/ (As on July, 2020)

  225. Astronomy in the big data era. https://generalassemb.ly/education/astronomy-in-the-big-data-era/dallas/ (As on July, 2020)

  226. ADASS. http://adass2018.astro.umd.edu/ (As on July, 2020)

  227. Berriman, G.B., Groom, S.L.: How will astronomy archives survive the data tsunami? Communications of the ACM (2011)

  228. Nichols, M.R.: The fast and the curious: How’s big data changing astronomy?. https://schooledbyscience.com/big-datas-changing-astronomy/ (2016)

  229. How Big Data Analytics is shaping Astronomy. https://runyourbusiness.deskera.in/big-data-analytics-shaping-astronomy/ (As on July, 2020)

  230. Big data is transforming. https://www.smithsonianmag.com/science-nature/ (As on July, 2020)

  231. Henry, L.: Data’s big bang: Applying analytics to astronomy. https://www.informationweek.com/datas-big-bang-applying-analytics-to-astronomy/a/d-id/282405 (2017)

  232. Andersen, R.: How big data is changing astronomy (again). https://www.theatlantic.com/technology/archive/2012/04/how-big-data-is-changing-astronomy-again/255917/ (2012)

  233. Urton, J.: With launch of new night sky survey, uw researchers ready for era of ‘big data’ astronomy. https://www.washington.edu/news/2017/11/14/with-launch-of-new-night-sky-survey-uw-researchers-ready-for-era-of-big-data-astronomy/ (2017)

  234. Norris, R.: Expect the unexpected from the big-data boom in radio astronomy. https://phys.org/news/2017-09-unexpected-big-data-boom-radioastronomy.html(2017)

  235. Mcguire, A.: It’s the turn of the celestial world now, big data transforming astronomy!. https://irishtechnews.ie/its-the-turn-of-the-celestial-world-now-big-data-transforming-astronomy/ (As on June, 2020)

  236. Data science in astronomy. https://medium.com/trends-in-data-science/data-science-in-astronomy-f0e9b499273/ (As on July, 2020)

  237. Ananthaswamy, A.: Faced with a data deluge, astronomers turn to automation. https://irishtechnews.ie/its-the-turn-of-the-celestial-world-now-big-data-transforming-astronomy/ (As on June, 2020)

  238. Beginning with ML. https://beginningwithml.wordpress.com/ (2020)

  239. Murphy, T.: Data-driven astronomy. https://www.coursera.org/learn/data-driven-astronomy (As on June, 2020)

  240. DataMining and machine learning in astronomy. https://www.as.arizona.edu/ (As on July, 2020)

  241. University, L.: Astronomy and data science. https://www.mastersportal.com/studies/188902/astronomy-and-data-science.html, (As on June, 2020)

  242. BigSkyEarth. https://bigskyearth.eu/ (As on July, 2020)

  243. Astrostatistics and astroinformatics portal. https://asaip.psu.edu// (As on June, 2020)

  244. Astroinformatics research group. http://astrirg.org/ (As on June, 2020)

  245. IDIA data intensive astronomy cloud. http://www.researchsupport.uct.ac.za/idia-data-intensive-astronomy-cloud (As on June, 2020)

  246. Linghe Kong, Y.Z., Tian Huang, Y, S.: Big data in astronomy (16th June 2020)

  247. Edwards, K.J., Gaber, M.M.: Astronomy and big data. Studies in Big Data. Springer (2014)

  248. Skoda, P., Adam, F.: Knowledge discovery in big data from astronomy and earth observation 1st edition (2020)

  249. Murtagh, F., Heck, A.: Multivariate data analysis. 131 (2012)

  250. Wall, J.V., Jenkins, C.R.: Practical statistics for astronomers (2012)

  251. Ivezić, ž, Connolly, A.J., VanderPlas, J.T., Gray, A.: Statistics, data mining, and machine learning in astronomy: a practical python guide for the analysis of survey data. 1 (2014)

  252. Cavuoti, S.: Data-rich astronomy: mining synoptic sky surveys. arXiv:1304.6615 (2013)

  253. Babu, G.J., Feigelson, E.D.: Statistical challenges in modern astronomy ii (2012)

  254. Feigelson, E.D., Jogesh, B.G.: Statistical challenges in modern astronomy ii (1997)

  255. Podgorski, K.: Advances in machine learning and data mining for astronomy. Int. Stat. Rev 82(1), 153–154 (2014)

    Article  Google Scholar 

  256. Kumar, M.: Sparse image and signal processing: Wavelets, curvelets, morphological diversity, by jean-luc starck, fionn murtagh, and jalal m. fadili. J. Electron. Imaging 19(4), 049901 (2007)

    Article  ADS  Google Scholar 

  257. Chattopadhyay, A.K., Chattopadhyay, T.: Statistical Methods for Astronomical Data Analysis, vol. 3. Springer, New York (2014)

    Book  MATH  Google Scholar 

  258. et al., S.S.: Machine learning in astronomy: A workman’s manual (2017)

  259. Scientific discovery through advanced computing. https://www.scidac.gov/ (As on January, 2021)

  260. Project. https://www.scidac.org/tags/projects.html (As on January, 2021)

  261. SciDAC-3 scientific computation application partnership project. https://www.bnl.gov/physics/scidac/ (As on January, 2021)

  262. LQCD SciDAC-4 project. https://lqcdscidac4.github.io/ (As on January, 2021)

  263. Frameworks, algorithms and scalable technologies for mathematics (FASTMath) SciDAC-5 Institute. https://scidac5-fastmath.lbl.gov/home (As on January, 2021)

  264. Laureijs, R., Amiaux, J., Arduini, S., Augueres, J.-L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C., Duvet, L., Ealet, A., et al.: Euclid definition study report. arXiv:1110.3193 (2011)

  265. AWS SageMaker. https://aws.amazon.com/sagemaker/ (As on July, 2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Sen.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sonali Agarwal, Pavan Chakraborty and Krishna Pratap Singh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Agarwal, S., Chakraborty, P. et al. Astronomical big data processing using machine learning: A comprehensive review. Exp Astron 53, 1–43 (2022). https://doi.org/10.1007/s10686-021-09827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09827-4

Keywords

Navigation