Skip to main content
Log in

The case for landed Mercury science

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we advocate for establishing key scientific priorities for the future of Mercury exploration, including the development of specific science goals for a landed mission. We support the Mercury science community in fostering closer collaboration with ongoing and planned exoplanet investigations. The continued exploration of Mercury should be conceived as a multi-mission, multi-generational effort, and the landed exploration of Mercury should be a high scientific priority in the coming decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Solomon, SC, et al.: Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby. Science 321, 59–62(2008). https://doi.org/10.1126/science.1159706

    Article  ADS  Google Scholar 

  2. Benkhoff, J, et al.: BepiColombo –Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 58, 2–20(2010). https://doi.org/10.1016/j.pss.2009.09.020

  3. National Research Council: Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Book  Google Scholar 

  4. Nittler, L.R., et al.: The major-elementcomposition of Mercury’s surface from MESSENGER X-rayspectrometry. Science 333, 1,847–1,850 (2011). https://doi.org/10.1126/science.1211567

  5. Peplowski, P.N., et al.: Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science 333, 1,850–1,852 (2011). https://doi.org/10.1126/science.1211576

  6. Zolotov, M.Y., et al.: Implications of the MESSENGER discovery of high sulfur abundance on the surface of Mercury. EOS(Transactions, American Geophysical Union) American Geophysical Union, San Francisco, pp. abstract # P41A-1584 (2011)

  7. McCubbin, F.M., et al.: A low O/Si ratio on the surface of Mercury: Evidence for silicon smelting? J. Geophys. Res. Planets 122, 2,053–2,076 (2017). https://doi.org/10.1002/2017JE005367

  8. Peplowski, PN, et al.: Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus 253, 346–363(2015). https://doi.org/10.1016/j.icarus.2015.02.002

    Article  ADS  Google Scholar 

  9. Weider, SZ, et al.: Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-RaySpectrometer. Earth Planet. Sci. Lett. 416, 109–120(2015). https://doi.org/10.1016/j.epsl.2015.01.023

    Article  ADS  Google Scholar 

  10. Vander Kaaden, KE, et al.: Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus 285, 155–168(2017). https://doi.org/10.1016/j.icarus.2016.11.041

    Article  ADS  Google Scholar 

  11. Albarède, F.: Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1,227–1,233 (2009)https://doi.org/10.1038/nature08477

  12. Peplowski, PN, et al.: Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-RaySpectrometer. Icarus 228, 86–95(2014). https://doi.org/10.1016/j.icarus.2013.09.007

    Article  ADS  Google Scholar 

  13. Peplowski, PN, et al.: Constraints on the abundance of carbon in near-surfacematerials on Mercury: Results from the MESSENGER Gamma-RaySpectrometer. Planet. Space Sci. 108, 98–107(2015). https://doi.org/10.1016/j.pss.2015.01.008

    Article  ADS  Google Scholar 

  14. Nittler, L.R., Chabot, N.L., Grove, T.L., Peplowski, P.N.: The chemical composition of Mercury. In: Solomon, S. C., Nittler, L. R., and Anderson, B. J. (eds.) Mercury: The View after MESSENGER, pp. 30–51. Cambridge Planetary Science (2018)

  15. Vander Kaaden, K.E., et al.: Mercury sample return to revolutionize our understanding of the solar system, 2023–2032. Decadal Survey White Paper (2020)

  16. Gladman, B, Coffey, J: Mercurian impact ejecta: Meteorites and mantle. Meteorit. Planet. Sci. 44, 285–291(2009). https://doi.org/10.1111/j.1945-5100.2009.tb00734.x

  17. Ash, ME, Shapiro, II, Smith, WB: The system of planetary masses. Science 174, 551–556(1971). https://doi.org/10.1126/science.174.4009.551

    Article  ADS  Google Scholar 

  18. Smith, DE, et al.: Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217(2012). https://doi.org/10.1126/science.1218809

    Article  ADS  Google Scholar 

  19. Ebel, D.S., Stewart, S.T.: The elusive origin of Mercury. In: Solomon, S.C., Nittler, L.R., Anderson, B. (eds.) Mercury: The View after MESSENGER, pp. 496–514. J. Cambridge Planetary Science (2018)

  20. Margot, J.-L., Hauck, S.A., Mazarico, I.I., Padovan, E., S., and Peale, S.J.: Mercury’s internal structure. In: Solomon, S. C., Nittler, L. R., and Anderson, B. J. (eds.) Mercury: The View after MESSENGER, pp. 85–113. Cambridge Planetary Science (2018)

  21. Williams, J.-P., Ruiz, J., Rosenburg, M.A., Aharonson, O., Phillips, R.J.: Insolation driven variations of Mercury’s lithospheric strength. J. Geophys. Res. Planets 116, E01008 (2011). https://doi.org/10.1029/2010JE003655

    Article  ADS  Google Scholar 

  22. Padovan, S, Margot, J-L, Hauck, SA, Moore, II, Solomon, SC: The tides of Mercury and possible implications for its interior structure. Journal of Geophysical Research Planets 119, 850–866(2014). https://doi.org/10.1002/2013JE004459

    Article  ADS  Google Scholar 

  23. Steinbrügge, G., et al.: Viscoelastic tides of Mercury and the determination of its inner core size. J. Geophys. Res. Planets 123, 2760–2772(2018). https://doi.org/10.1029/2018je005569

    Article  ADS  Google Scholar 

  24. Banks, M.E., et al.: Duration of activity on lobate-scarpthrust faults on Mercury. J. Geophys. Res. Planets 120, 1,751–1,762 (2015). https://doi.org/10.1002/2015JE004828

  25. Lammlein, DR: Lunar seismicity and tectonics. Phys. Earth Planet. Inter. 14, 224–273(1977). https://doi.org/10.1016/0031-9201(77)90175-3

    Article  ADS  Google Scholar 

  26. Nakamura, Y: Farside deep moonquakes and deep interior of the Moon. Journal of Geophysical Research: Planets 110, E01001 (2005). https://doi.org/10.1029/2004je002332

    Article  ADS  Google Scholar 

  27. Dorman, J., et al.: On the time-varyingproperties of the lunar seismic meteoroid population. Lunar Planet. Sci. Conf. Proc. 9, 3615–3626 (1978)

  28. Oberst, J, Nakamura, Y: A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network. Icarus 91, 315–325(1991). https://doi.org/10.1016/0019-1035(91)90027-Q

    Article  ADS  Google Scholar 

  29. Le Feuvre, M, Wieczorek, MA: Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20(2011). https://doi.org/10.1016/j.icarus.2011.03.010

    Article  ADS  Google Scholar 

  30. Banerdt, W.B., et al.: InSight: An integrated exploration of the interior of Mars. 43rd Lunar and Planetary Science Conference, abstract 2838 (2012)

  31. Stark, A, et al.: First MESSENGER orbital observations of Mercury’s librations. Geophys. Res. Lett. 42, 7881–7889(2015). https://doi.org/10.1002/2015gl065152

    Article  ADS  Google Scholar 

  32. Dehant, V., et al.: Revealing Mars’ deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 59, 1,069–1,081. (2011). https://doi.org/10.1016/j.pss.2010.03.014

  33. Genova, A, et al.: Geodetic evidence that Mercury has a solid inner core. Geophys. Res. Lett. 46, 3625–3633(2019). https://doi.org/10.1029/2018gl081135

  34. Stanley, S, Bloxham, J, Hutchinson, WE, Zuber, MT: Thin shell dynamo models consistent with Mercury’s weak surface magnetic field. Earth Planet. Sci. Lett. 234, 27–38(2005). https://doi.org/10.1016/j.epsl.2005.02.040

    Article  ADS  Google Scholar 

  35. James, P.B., Zuber, M.T., Phillips, R.J., Solomon, S.C.: Support of long-wavelengthtopography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets 120, 287–310(2015). https://doi.org/10.1002/2014JE004713

    Article  ADS  Google Scholar 

  36. Johnson, C.L., et al.: MESSENGER observations of induced magnetic fields in Mercury’s core. Geophys. Res. Lett. 43, 2,436–2,444. (2016). https://doi.org/10.1002/2015GL067370

  37. Zhang, Z., Pommier, A.: Electrical investigation of metal-olivinesystems and application to the deep interior of Mercury. J. Geophys. Res. Planets 122, 2,702–2,718 (2017). https://doi.org/10.1002/2017JE005390

  38. Noda, H, Heki, K, Hanada, H: In situ Lunar Orientation Measurement (ILOM): Simulation of observation. Adv. Space Res. 42, 358–362(2008). https://doi.org/10.1016/j.asr.2007.01.025

    Article  ADS  Google Scholar 

  39. Zuber, MT, et al.: Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL)mission. Science 339, 668–671(2013). https://doi.org/10.1126/science.1231507

    Article  ADS  Google Scholar 

  40. Drinkwater, M, Floberghagen, R, Haagmans, R, Muzi, D, Popescu, A: GOCE: ESA’s first Earth Explorer core mission. Space Sci. Rev. 108, 419–432(2003). https://doi.org/10.1007/978-94-017-1333-7_36

  41. Griggs, C.E., et al.: Tunable superconducting gravity gradiometer for Mars climate, atmosphere, and gravity field investigation. 46th Lunar and Planetary Science Conference, abstract 1735 (2015)

  42. Denevi, B.W., et al.: The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets 118, 891–907(2013). https://doi.org/10.1002/jgre.20075

    Article  ADS  Google Scholar 

  43. Marchi, S, et al.: Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61(2013). https://doi.org/10.1038/nature12280

    Article  ADS  Google Scholar 

  44. Byrne, PK, et al.: Mercury’s global contraction much greater than earlier estimates. Nat. Geosci. 7, 301–307(2014). https://doi.org/10.1038/ngeo2097

    Article  ADS  Google Scholar 

  45. Byrne, P.K., et al.: Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett. 43, 7,408–7,416 (2016).https://doi.org/10.1002/2016GL069412

  46. Watters, T.R., et al.: Distribution of large-scalecontractional tectonic landforms on Mercury: Implications for the origin of global stresses. Geophys. Res. Lett. 42, 3,755–3,763 (2015). https://doi.org/10.1002/2015gl063570

  47. Johnson, CL, et al.: Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science 348, 892–895 (2015). https://doi.org/10.1126/science.aaa8720

  48. Hood, L.L.: Magnetic anomalies concentrated near and within Mercury’s impact basins: Early mapping and interpretation. J. Geophys. Res. Planets. 121, 1,016–1,025 (2016). https://doi.org/10.1002/2016JE005048

  49. Strauss, B.E., Feinberg, J.M., Johnson, C.L.: Magnetic mineralogy of the Mercurian lithosphere. J. Geophys. Res. Planets 121, 2,225–2,238 (2016). https://doi.org/10.1002/2016JE005054

  50. Anderson, B.J., et al.: Steady-statefield-aligned currents at Mercury. Geophys. Res. Lett. 41, 7,444–7,452 (2014). https://doi.org/10.1002/2014GL061677

  51. Domingue, DL, et al.: Mercury’s weather-beatensurface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev. 181, 121–214(2014). https://doi.org/10.1007/S11214-014-0039-5

  52. Martinez, R, et al.: Sputtering of sodium and potassium from nepheline: Secondary ion yields and velocity spectra. Nucl. Instrum. Methods Phys. Res., Sect. B 406, 523–528(2017). https://doi.org/10.1016/j.nimb.2017.01.042

    Article  ADS  Google Scholar 

  53. Merkel, AW, et al.: Evidence connecting Mercury’s magnesium exosphere to its magnesium-richsurface terrane. Geophys. Res. Lett. (2018). https://doi.org/10.1029/2018GL078407

    Article  Google Scholar 

  54. Blewett, D.T., et al.: Analysis of MESSENGER high-resolutionimages of Mercury’s hollows and implications for hollow formation. J. Geophys. Res. Planets 121, 1,798–1,813 (2016).https://doi.org/10.1002/2016JE005070

  55. Blewett, D.T., et al.: Hollows on Mercury: Evidence for geologically recent volatile-relatedactivity. Science 333, 1,856–1,859 (2011). https://doi.org/10.1126/science.1211681

  56. Helbert, J., et al.: Olivine thermal emissivity under extreme temperature ranges: Implication for Mercury surface. Earth Planet. Sci. Lett. 371–372, 252–257 (2013). https://doi.org/10.1016/j.epsl.2013.03.038

  57. Ferrari, S, et al.: In-situ high-temperature emissivity spectra and thermal expansion of C2/c pyroxenes: Implications for the surface of Mercury. Am. Miner. 99, 786–792 (2014). https://doi.org/10.2138/am.2014.4698

  58. Slade, MA, Butler, BJ, Muhleman, DO: Mercury radar imaging: Evidence for polar ice. Science 258, 635–640(1992). https://doi.org/10.1126/science.258.5082.635

    Article  ADS  Google Scholar 

  59. Harmon, JK, Slade, MA: Radar mapping of Mercury: Full-diskimages and polar anomalies. Science 258, 640–643(1992). https://doi.org/10.1126/science.258.5082.640

  60. Butler, B.J., Muhleman, D.O., Slade, M.A.: Mercury: Full-diskradar images and the detection and stability of ice at the north pole. J. Geophys. Res. 98, 15,003–15,023 (1993). https://doi.org/10.1029/93JE01581

  61. Harmon, JK, Slade, MA, Rice, MS: Radar imagery of Mercury’s putative polar ice: 1999–2005Arecibo results. Icarus 211, 37–50(2011). https://doi.org/10.1016/j.icarus.2010.08.007

  62. Deutsch, AN, et al.: Comparison of areas in shadow from imaging and altimetry in the north polar region of Mercury and implications for polar ice deposits. Icarus 280, 158–171(2016). https://doi.org/10.1016/j.icarus.2016.06.015

  63. Chabot, N.L., Shread, E.E., Harmon, J.K.: Investigating Mercury’s south polar deposits: Arecibo radar observations and high-resolutiondetermination of illumination conditions. J. Geophys. Res. Planets 123, 666–681(2018). https://doi.org/10.1002/2017JE005500

    Article  ADS  Google Scholar 

  64. Paige, DA, et al.: Thermal stability of volatiles in the north polar region of Mercury. Science 339, 300–303(2013). https://doi.org/10.1126/science.1231106

    Article  ADS  Google Scholar 

  65. Lawrence, DJ, et al.: Evidence for water ice near Mercury’s north pole from MESSENGER Neutron Spectrometer measurements. Science 339, 292–296(2013). https://doi.org/10.1126/science.1229953

    Article  ADS  Google Scholar 

  66. Neumann, GA, et al.: Bright and dark polar deposits on Mercury: Evidence for surface volatiles. Science 339, 296–300(2013). https://doi.org/10.1126/science.1229764

    Article  ADS  Google Scholar 

  67. Chabot, N.L., et al.: Imaging Mercury’s polar deposits during MESSENGER’s low-altitudecampaign. Geophys. Res. Lett. 43, 9,461–9,468 (2016). https://doi.org/10.1002/2016GL070403

  68. Deutsch, A.N., et al.: Science opportunities offered by Mercury’s ice-bearingpolar deposits. 2023–2032Decadal Survey White Paper (2020)

  69. Grard, R, Novara, M, Scoon, G: BepiColombo –A multidisciplinary mission to a hot planet. ESA Bull. 103, 11–19(2000)

    Google Scholar 

  70. Boehnhardt, H, et al.: The Philae lander mission and science overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160248 (2017). https://doi.org/10.1098/rsta.2016.0248

    Article  ADS  Google Scholar 

  71. Ho, T.-M., et al.: MASCOT—The mobile asteroid surface scout onboard the Hayabusa2 mission. Space Sci. Rev. 208, 339–374 (2017). https://doi.org/10.1007/s11214-016-0251-6

  72. Ernst, C.M., et al.: Mercury lander planetary mission concept study. Report submitted to NASA and the planetary science and astrobiology decadal survey, arXiv:2107.06795 (2020)

  73. Santerne, A., et al.: An Earth-sizedexoplanet with a Mercury-likecomposition. Nat. Astron. 2, 393–400(2018). https://doi.org/10.1038/s41550-018-0420-5

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this paper, and read and approved the final manuscript.

Corresponding author

Correspondence to Paul K. Byrne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, P.K., Blewett, D.T., Chabot, N.L. et al. The case for landed Mercury science. Exp Astron 54, 561–573 (2022). https://doi.org/10.1007/s10686-021-09788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09788-8

Keywords

Navigation