Akimoto, K., Gary, S.P., Omidi, N.: Electron/ion whistler instabilities and magnetic noise bursts. J. Geophys. Res. 92, 11209–11214 (1987). https://doi.org/10.1029/JA092iA10p11209
ADS
Article
Google Scholar
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales. Phys. Rev. Lett. 103, 165003 (2009). https://doi.org/10.1103/PhysRevLett.103.165003
ADS
Article
Google Scholar
Alexandrova, O., Bale, S.D., Lacombe, C.: Comment on “Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale”. Phys. Rev. Lett. 111, 149001 (2013). https://doi.org/10.1103/PhysRevLett.111.149001
ADS
Article
Google Scholar
Araneda, J.A., Maneva, Y., Marsch, E.: Preferential Heating and Acceleration of α Particles by Alfvén-Cyclotron Waves. Phys. Rev. Lett. 102, 175001 (2009). https://doi.org/10.1103/PhysRevLett.102.175001
ADS
Article
Google Scholar
Artemyev, A.V., Rankin, R., Blanco, M.: Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere. J. Geophys. Res. (Space Physics). 120, 10,305–10,316 (2015). https://doi.org/10.1002/2015JA021781
Article
Google Scholar
Bale, S.D., Pulupa, M., Salem, C., Chen, C.H.K., Quataert, E.: Electron Heat Conduction in the Solar Wind: Transition from Spitzer-Härm to the Collisionless Limit. Astrophys. J. 769, L22 (2013). https://doi.org/10.1088/2041-8205/769/2/L22
ADS
Article
Google Scholar
Bandyopadhyay, R., Chasapis, A., Chhiber, R., Parashar, T.N., Maruca, B.A., Matthaeus, W.H., et al.: Solar Wind Turbulence Studies Using MMS Fast Plasma Investigation Data. Astrophys. J. 866, 81 (2018). https://doi.org/10.3847/1538-4357/aade93
ADS
Article
Google Scholar
Belcher, J.W., Davis, J., Leverett: Large-amplitude Alfv´en waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 (1971). https://doi.org/10.1029/JA076i016p03534
ADS
Article
Google Scholar
Berger, J.M., Newcomb, W.A., Dawson, J.M., Frieman, E.A., Kulsrud, R.M., Lenard, A.: Heating of a Confined Plasma by Oscillating Electromagnetic Fields. Phys. Fluids. 1, 301–307 (1958). https://doi.org/10.1063/1.1705888
ADS
MathSciNet
Article
MATH
Google Scholar
Boldyrev, S.: Spectrum of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 96, 115002 (2006). https://doi.org/10.1103/PhysRevLett.96.115002
ADS
Article
Google Scholar
Borovsky, J.E., Gary, S.P.: How important are the alpha-proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere? J. Geophys. Res. (Space Physics). 119, 5210–5219 (2014). https://doi.org/10.1002/2014JA019758
ADS
Article
Google Scholar
Bourouaine, S., Marsch, E., Neubauer, F.M.: Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind. Geophys. Res. Lett. 37, L14104 (2010). https://doi.org/10.1029/2010GL043697
ADS
Article
Google Scholar
Bourouaine, S., Marsch, E., Neubauer, F.M.: On the Relative Speed and Temperature Ratio of Solar Wind Alpha Particles and Protons: Collisions Versus Wave Effects. Astrophys. J. 728, L3 (2011). https://doi.org/10.1088/2041-8205/728/1/L3
ADS
Article
Google Scholar
Bruno, R. and Carbone, V. (2013). The Solar Wind as a Turbulence Laboratory. Living Rev. Solar Phys. 10, 2. 10.12942/lrsp-2013-2
Bryant, D.A., Cline, T.L., Desai, U.D., McDonald, F.B.: Explorer 12 Observations of Solar Cosmic Rays and Energetic Storm Particles after the Solar Flare of September 28, 1961. J. Geophys. Res. 67, 4983–5000 (1962). https://doi.org/10.1029/JZ067i013p04983
ADS
Article
Google Scholar
Burch, J.L., Torbert, R.B., Phan, T.D., Chen, L.J., Moore, T.E., Ergun, R.E., et al.: Electron-scale measurements of magnetic reconnection in space. Science. 352, aaf2939 (2016). https://doi.org/10.1126/science.aaf2939
ADS
Article
Google Scholar
Bykov, A.M., Kaastra, J.S., Brüggen, M., Markevitch, M., Falanga, M., Paerels, F.B.S.: Editorial to the Topical Collection on Clusters of Galaxies: Physics and Cosmology. Space Sci. Rev. 215, 27 (2019). https://doi.org/10.1007/s11214-019-0595-9
ADS
Article
Google Scholar
Cairns, I.H., Zank, G.P.: Turn-on of 2-3 kHz radiation beyond the heliopause. Geophys. Res. Lett. 29, 1143 (2002). https://doi.org/10.1029/2001GL014112
ADS
Article
Google Scholar
Camporeale, E., Burgess, D.: Electron firehose instability: Kinetic linear theory and two-dimensional particle-in-cell simulations. J. Geophys. Res. (Space Physics). 113, A07107 (2008). https://doi.org/10.1029/2008JA013043
ADS
Article
Google Scholar
Carbone, V., Veltri, P., Mangeney, A.: Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence. Phys. Fluids A. 2, 1487–1496 (1990). https://doi.org/10.1063/1.857598
ADS
Article
MATH
Google Scholar
Cerri, S.S., Califano, F.: Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations. New Journal of Physics. 19, 025007 (2017). https://doi.org/10.1088/1367-2630/aa5c4a
ADS
Article
Google Scholar
Cerri, S.S., Servidio, S., Califano, F.: Kinetic Cascade in Solar-wind Turbulence: 3D3V Hybrid-kinetic Simulations with Electron Inertia. Astrophys. J. 846, L18 (2017). https://doi.org/10.3847/2041-8213/aa87b0
ADS
Article
Google Scholar
Cerri, S.S., Kunz, M.W., Califano, F.: Dual Phase-space Cascades in 3D Hybrid-Vlasov-Maxwell Turbulence. Astrophys. J. 856, L13 (2018). https://doi.org/10.3847/2041-8213/aab557
ADS
Article
Google Scholar
Chael, A., Rowan, M., Narayan, R., Johnson, M., Sironi, L.: The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*. MON. NOT. R. ASTRON. SOC. 478, 5209–5229 (2018). https://doi.org/10.1093/mnras/sty1261
ADS
Article
Google Scholar
Chandran, B.D.G., Li, B., Rogers, B.N., Quataert, E., Germaschewski, K.: Perpendicular Ion Heating by Low-frequency Alfvén-wave Turbulence in the Solar Wind. Astrophys. J. 720, 503–515 (2010). https://doi.org/10.1088/0004-637X/720/1/503
ADS
Article
Google Scholar
Chasapis, A., Retinò, A., Sahraoui, F., Vaivads, A., Khotyaintsev, Y.V., Sundkvist, D., et al.: Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma. Astrophys. J. 804, L1 (2015). https://doi.org/10.1088/2041-8205/804/1/L1
ADS
Article
Google Scholar
Chasapis, A., Matthaeus, W.H., Parashar, T.N., Le Contel, O., Retinò, A., Breuillard, H., et al.: Electron Heating at Kinetic Scales in Magnetosheath Turbulence. Astrophys. J. 836, 247 (2017). https://doi.org/10.3847/1538-4357/836/2/247
ADS
Article
Google Scholar
Chasapis, A., Matthaeus, W.H., Parashar, T.N., Wan, M., Haggerty, C.C., Pollock, C.J., et al.: InSitu Observation of Intermittent Dissipation at Kinetic Scales in the Earth’s Magnetosheath. Astrophys. J. 856, L19 (2018). https://doi.org/10.3847/2041-8213/aaadf8
ADS
Article
Google Scholar
Chen, C.H.K.: Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82, 535820602 (2016). https://doi.org/10.1017/S0022377816001124
Article
Google Scholar
Chen, C.H.K., Boldyrev, S.: Nature of Kinetic Scale Turbulence in the Earth’s Magnetosheath. Astrophys. J. 842, 122 (2017). https://doi.org/10.3847/1538-4357/aa74e0
ADS
Article
Google Scholar
Chen, C.H.K., Horbury, T.S., Schekochihin, A.A., Wicks, R.T., Alexandrova, O., Mitchell, J.: Anisotropy of Solar Wind Turbulence between Ion and Electron Scales. Phys. Rev. Lett. 104, 255002 (2010). https://doi.org/10.1103/PhysRevLett.104.255002
ADS
Article
Google Scholar
Chen, C.H.K., Boldyrev, S., Xia, Q., Perez, J.C.: Nature of Subproton Scale Turbulence in the Solar Wind. Phys. Rev. Lett. 110, 225002 (2013). https://doi.org/10.1103/PhysRevLett.110.225002
ADS
Article
Google Scholar
Chen, C.H.K., Klein, K.G., Howes, G.G.: Evidence for electron Landau damping in space plasma turbulence. Nature Comm. 10, 740 (2019). https://doi.org/10.1038/s41467-019-08435-3
ADS
Article
Google Scholar
Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann Equation and the One-Fluid Hydromagnetic Equations in the Absence of Particle Collisions. Proc. R. Soc. London A. 236, 112–118 (1956). https://doi.org/10.1098/rspa.1956.0116
MathSciNet
Article
MATH
Google Scholar
Couturier, P., Hoang, S., Meyer-Vernet, N., Steinberg, J.L.: Quasi-thermal noise in a stable plasma at rest: theory and observations from ISEE 3. J. Geophys. Res. 86, 11127–11138 (1981). https://doi.org/10.1029/JA086iA13p11127
ADS
Article
Google Scholar
Cowie, L.L., McKee, C.F.: The evaporation of spherical clouds in a hot gas. I. Classical and saturated mass loss rates. Astrophys. J. 211, 135–146 (1977). https://doi.org/10.1086/154911
Article
Google Scholar
Damiano, P.A., Johnson, J.R., Chaston, C.C.: Ion gyroradius effects on particle trapping in kinetic Alfvén waves along auroral field lines. J. Geophys. Res. (Space Physics). 121, 10,831–10,844 (2016). https://doi.org/10.1002/2016JA022566
Article
Google Scholar
Debye Collaboration, Wicks, R. T., Verscharen, D., et al. (2019). Debye Mission Proposal, http://www.ucl.ac.uk/mssl/research-projects/2019/may/debye. Accessed 02 July 2020
Del Sarto, D., Pegoraro, F.: Shear-induced pressure anisotropization and correlation with fluid vorticity in a low collisionality plasma. Mon. Not. R. Astron. Soc. 475, 181–192 (2018). https://doi.org/10.1093/mnras/stx3083
ADS
Article
Google Scholar
Del Sarto, D., Pegoraro, F., Califano, F.: Pressure anisotropy and small spatial scales induced by velocity shear. Phys. Rev. E. 93, 053203 (2016). https://doi.org/10.1103/PhysRevE.93.053203
ADS
Article
Google Scholar
Doeleman, S., Agol, E., Backer, D., Baganoff, F., Bower, G. C., Broderick, A., et al. (2009). Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. In astro2010: The Astronomy and Astrophysics Decadal Survey. vol. 2010, 68
Dorland, W., Jenko, F., Kotschenreuther, M., Rogers, B.N.: Electron Temperature Gradient Turbulence. Phys. Rev. Lett. 85, 5579–5582 (2000). https://doi.org/10.1103/PhysRevLett.85.5579
ADS
Article
Google Scholar
Doschek, G.A., McKenzie, D.E., Warren, H.P.: Plasma Dynamics Above Solar Flare Soft X-Ray Loop Tops. Astrophys. J. 788, 26 (2014). https://doi.org/10.1088/0004-637X/788/1/26
ADS
Article
Google Scholar
Doyle, E. J., Houlberg, W. A., Kamada, Y., Mukhovatov, V., Osborne, T. H., Polevoi, A., et al. (2007). Chapter 2: Plasma confinement and transport. Nuclear Fusion 47, S18–S127. 10.1088/0029-5515/ 47/6/S02
Drake, J.F., Shay, M.A., Thongthai, W., Swisdak, M.: Production of Energetic Electrons during Magnetic Reconnection. Phys. Rev. Lett. 94, 095001 (2005). https://doi.org/10.1103/PhysRevLett.94.095001
ADS
Article
Google Scholar
Drake, J.F., Swisdak, M., Che, H., Shay, M.A.: Electron acceleration from contracting magnetic islands during reconnection. Nature. 443, 553–556 (2006). https://doi.org/10.1038/nature05116
ADS
Article
Google Scholar
Dungey, J.W.: Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 6, 47–48 (1961). https://doi.org/10.1103/PhysRevLett.6.47
ADS
Article
Google Scholar
Eastwood, J.P., Phan, T.D., Drake, J.F., Shay, M.A., Borg, A.L., Lavraud, B., et al.: Energy Partition in Magnetic Reconnection in Earth’s Magnetotail. Phys. Rev. Lett. 110, 225001 (2013). https://doi.org/10.1103/PhysRevLett.110.225001
ADS
Article
Google Scholar
Eastwood, J.P., Mistry, R., Phan, T.D., Schwartz, S.J., Ergun, R.E., Drake, J.F., et al.: Guide Field Reconnection: Exhaust Structure and Heating. Geophys. Res. Lett. 45, 4569–4577 (2018). https://doi.org/10.1029/2018GL077670
ADS
Article
Google Scholar
Ergun, R.E., Goodrich, K.A., Stawarz, J.E., Andersson, L., Angelopoulos, V.: Large-amplitude electric fields associated with bursty bulk flow braking in the Earth’s plasma sheet. J. Geophys. Res. (Space Physics). 120, 1832–1844 (2015). https://doi.org/10.1002/2014JA020165
ADS
Article
Google Scholar
Ergun, R.E., Goodrich, K.A., Wilder, F.D., Holmes, J.C., Stawarz, J.E., Eriksson, S., et al.: Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection. Phys. Rev. Lett. 116, 235102 (2016a). https://doi.org/10.1103/PhysRevLett.116.235102
ADS
Article
Google Scholar
Ergun, R.E., Holmes, J.C., Goodrich, K.A., Wilder, F.D., Stawarz, J.E., Eriksson, S., et al.: Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause. Geophys. Res. Lett. 43, 5626–5634 (2016b). https://doi.org/10.1002/2016GL068992
ADS
Article
Google Scholar
Ergun, R.E., Goodrich, K.A., Wilder, F.D., Ahmadi, N., Holmes, J.C., Eriksson, S., et al.: Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth’s Magnetotail. Geophys. Res. Lett. 45, 3338–3347 (2018). https://doi.org/10.1002/2018GL076993
ADS
Article
Google Scholar
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., et al.: First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7
Article
Google Scholar
Fabian, A.C.: Cooling Flows in Clusters of Galaxies. ARA&A. 32, 277–318 (1994). https://doi.org/10.1146/annurev.aa.32.090194.001425
ADS
Article
Google Scholar
Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D., Gary, S.P.: Solar wind electrons. J. Geophys. Res. 80, 4181 (1975). https://doi.org/10.1029/JA080i031p04181
ADS
Article
Google Scholar
Feldman, W.C., Asbridge, J.R., Bame, S.J., Gary, S.P., Montgomery, M.D., Zink, S.M.: Evidence for the regulation of solar wind heat flux at 1 AU. J. Geophys. Res. 81, 5207–5211 (1976). https://doi.org/10.1029/JA081i028p05207
ADS
Article
Google Scholar
Feldman, W.C., Asbridge, J.R., Bame, S.J., Gosling, J.T., Lemons, D.S.: The core electron temperature profile between 0.5 and 1.0 AU in the steady-state high speed solar wind. J. Geophys. Res. 84, 4463–4467 (1979). https://doi.org/10.1029/JA084iA08p04463
ADS
Article
Google Scholar
Fichtner, H., Scherer, K., Lazar, M., Fahr, H.J., Vörös, Z.: Entropy of plasmas described with regularized κ distributions. Phys. Rev. E. 98, 053205 (2018). https://doi.org/10.1103/PhysRevE.98.053205
ADS
Article
Google Scholar
Forman, M.A., Webb, G.M.: Acceleration of energetic particles. Washington DC American Geophysical Union Geophysical Monograph Series. 34, 91–114 (1985). https://doi.org/10.1029/GM034p0091
ADS
Article
Google Scholar
Forman, M.A., Wicks, R.T., Horbury, T.S.: Detailed Fit of “Critical Balance” Theory to Solar Wind Turbulence Measurements. Astrophys. J. 733, 76 (2011). https://doi.org/10.1088/0004-637X/733/2/76
ADS
Article
Google Scholar
Frisch, U. (1995). Turbulence
Book
Google Scholar
Gary, S.P.: Electrostatic heat flux instabilities. J. Plasma Phys. 20, 47–60 (1978). https://doi.org/10.1017/S0022377800021358
ADS
Article
Google Scholar
Gary, S.P., Karimabadi, H.: Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel. J. Geophys. Res. (Space Physics). 111, A11224 (2006). https://doi.org/10.1029/2006JA011764
ADS
Article
Google Scholar
Gary, S.P., Li, H.: Whistler Heat Flux Instability at High Beta. Astrophys. J. 529, 1131–1135 (2000). https://doi.org/10.1086/308294
ADS
Article
Google Scholar
Gary, S.P., Nishimura, K.: Resonant electron firehose instability: Particle-in-cell simulations. Phys. Plasmas. 10, 3571–3576 (2003). https://doi.org/10.1063/1.1590982
ADS
Article
Google Scholar
Gary, S.P., Saito, S.: Broadening of solar wind strahl pitch-angles by the electron/electron instability: Particle-in-cell simulations. Geophys. Res. Lett. 34, L14111 (2007). https://doi.org/10.1029/2007GL030039
ADS
Article
Google Scholar
Gary, S.P., Feldman, W.C., Forslund, D.W., Montgomery, M.D.: Electron heat flux instabilities in the solar wind. Geophys. Res. Lett. 2, 79–82 (1975). https://doi.org/10.1029/GL002i003p00079
ADS
Article
Google Scholar
Gary, S.P., Scime, E.E., Phillips, J.L., Feldman, W.C.: The whistler heat flux instability: Threshold conditions in the solar wind. J. Geophys. Res. 99, 23391–23400 (1994). https://doi.org/10.1029/94JA02067
ADS
Article
Google Scholar
Gary, S.P., Neagu, E., Skoug, R.M., Goldstein, B.E.: Solar wind electrons: Parametric constraints. J. Geophys. Res. 104, 19843–19850 (1999). https://doi.org/10.1029/1999JA900244
ADS
Article
Google Scholar
Gary, S.P., Hughes, R.S., Wang, J.: Whistler Turbulence Heating of Electrons and Ions: Three-dimensional Particle-in-cell Simulations. Astrophys. J. 816, 102 (2016a). https://doi.org/10.3847/0004-637X/816/2/102
ADS
Article
Google Scholar
Gary, S.P., Jian, L.K., Broiles, T.W., Stevens, M.L., Podesta, J.J., Kasper, J.C.: Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005. J. Geophys. Res. (Space Physics). 121, 30–41 (2016b). https://doi.org/10.1002/2015JA021935
ADS
Article
Google Scholar
Genestreti, K.J., Varsani, A., Burch, J.L., Cassak, P.A., Torbert, R.B., Nakamura, R., et al.: MMS Observation of Asymmetric Reconnection Supported by 3-D Electron Pressure Divergence. J. Geophys. Res. (Space Physics). 123, 1806–1821 (2018). https://doi.org/10.1002/2017JA025019
ADS
Article
Google Scholar
Goldreich, P., Sridhar, S.: Toward a Theory of Interstellar Turbulence. II. Strong Alfvenic Turbulence. Astrophys. J. 438, 763 (1995). https://doi.org/10.1086/175121
ADS
Article
Google Scholar
Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., Smith, E.J.: Bidirectional solar wind electron heat flux events. J. Geophys. Res. 92, 8519–8535 (1987). https://doi.org/10.1029/JA092iA08p08519
ADS
Article
Google Scholar
Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. (Space Physics). 110, A01107 (2005). https://doi.org/10.1029/2004JA010809
ADS
Article
Google Scholar
Graham, G.A., Rae, I.J., Owen, C.J., Walsh, A.P., Arridge, C.S., Gilbert, L., et al.: The evolution of solar wind strahl with heliospheric distance. J. Geophys. Res. (Space Physics). 122, 3858–3874 (2017). https://doi.org/10.1002/2016JA023656
ADS
Article
Google Scholar
Greco, A., Chuychai, P., Matthaeus, W.H., Servidio, S., Dmitruk, P.: Intermittent MHD structures and classical discontinuities. Geophys. Res. Lett. 35, L19111 (2008). https://doi.org/10.1029/2008GL035454
ADS
Article
Google Scholar
Greco, A., Perri, S., Servidio, S., Yordanova, E., Veltri, P.: The Complex Structure of Magnetic Field Discontinuities in the Turbulent Solar Wind. Astrophys. J. 823, L39 (2016). https://doi.org/10.3847/2041-8205/823/2/L39
ADS
Article
Google Scholar
Greco, A., Matthaeus, W.H., Perri, S., Osman, K.T., Servidio, S., Wan, M., et al.: Partial Variance of Increments Method in Solar Wind Observations and Plasma Simulations. Space Sci. Rev. 214, 1 (2018). https://doi.org/10.1007/s11214-017-0435-8
ADS
Article
Google Scholar
Gurnett, D.A., Kurth, W.S., Burlaga, L.F., Ness, N.F.: In Situ Observations of Interstellar Plasma with Voyager 1. Science. 341, 1489–1492 (2013). https://doi.org/10.1126/science.1241681
ADS
Article
Google Scholar
Hadid, L.Z., Sahraoui, F., Galtier, S., Huang, S.Y.: Compressible Magnetohydrodynamic Turbulence in the Earth’s Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data. Phys. Rev. Lett. 120, 055102 (2018). https://doi.org/10.1103/PhysRevLett.120.055102
ADS
Article
Google Scholar
Haggerty, C.C., Shay, M.A., Drake, J.F., Phan, T.D., McHugh, C.T.: The competition of electron and ion heating during magnetic reconnection. Geophys. Res. Lett. 42, 9657–9665 (2015). https://doi.org/10.1002/2015GL065961
ADS
Article
Google Scholar
Haynes, C.T., Burgess, D., Camporeale, E., Sundberg, T.: Electron vortex magnetic holes: A nonlinear coherent plasma structure. Phys. Plasmas. 22, 012309 (2015). https://doi.org/10.1063/1.4906356
ADS
Article
Google Scholar
He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: Possible Evidence of Alfvén-cyclotron Waves in the Angle Distribution of Magnetic Helicity of Solar Wind Turbulence. Astrophys. J. 731, 85 (2011). https://doi.org/10.1088/0004-637X/731/2/85
ADS
Article
Google Scholar
Hollweg, J.V.: Collisionless electron heat conduction in the solar wind. J. Geophys. Res. 81, 1649 (1976). https://doi.org/10.1029/JA081i010p01649
ADS
Article
Google Scholar
Horbury, T.S., Forman, M., Oughton, S.: Anisotropic Scaling of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 101, 175005 (2008). https://doi.org/10.1103/PhysRevLett.101.175005
ADS
Article
Google Scholar
Howes, G.G.: The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence. Astrophys. J. 827, L28 (2016). https://doi.org/10.3847/2041-8205/827/2/L28
ADS
Article
Google Scholar
Howes, G.G.: A prospectus on kinetic heliophysics. Phys. Plasmas. 24, 055907 (2017). https://doi.org/10.1063/1.4983993
ADS
Article
Google Scholar
Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., TenBarge, J.M.: The Slow-mode Nature of Compressible Wave Power in Solar Wind Turbulence. Astrophys. J. 753, L19 (2012). https://doi.org/10.1088/2041-8205/753/1/L19
ADS
Article
Google Scholar
Howes, G.G., McCubbin, A.J., Klein, K.G.: Spatially localized particle energization by Landau damping in current sheets produced by strong Alfvén wave collisions. J. Plasma Phys. 84, 905840105 (2018). https://doi.org/10.1017/S0022377818000053
Article
Google Scholar
Huang, S.Y., Sahraoui, F., Yuan, Z.G., Le Contel, O., Breuillard, H., He, J.S., et al.: Observations of Whistler Waves Correlated with Electron-scale Coherent Structures in the Magnetosheath Turbulent Plasma. Astrophys. J. 861, 29 (2018). https://doi.org/10.3847/1538-4357/aac831
ADS
Article
Google Scholar
Issautier, K., Meyer-Vernet, N., Moncuquet, M., Hoang, S.: Solar wind radial and latitudinal structure: Electron density and core temperature from Ulysses thermal noise spectroscopy. J. Geophys. Res. 103, 1969–1980 (1998). https://doi.org/10.1029/97JA02661
ADS
Article
Google Scholar
Jaynes, A.N., Turner, D.L., Wilder, F.D., Osmane, A., Baker, D.N., Blake, J.B., et al.: Energetic electron acceleration observed by MMS in the vicinity of an X-line crossing. Geophys. Res. Lett. 43, 7356–7363 (2016). https://doi.org/10.1002/2016GL069206
ADS
Article
Google Scholar
Jenko, F., Dorland, W.: Prediction of Significant Tokamak Turbulence at Electron Gyroradius Scales. Phys. Rev. Lett. 89, 225001 (2002). https://doi.org/10.1103/PhysRevLett.89.225001
ADS
Article
Google Scholar
Jenko, F., Dorland, W., Kotschenreuther, M., Rogers, B.N.: Electron temperature gradient driven turbulence. Phys. Plasmas. 7, 1904–1910 (2000). https://doi.org/10.1063/1.874014
ADS
Article
Google Scholar
Jian, L.K., Wei, H.Y., Russell, C.T., Luhmann, J.G., Klecker, B., Omidi, N., et al.: Electromagnetic Waves near the Proton Cyclotron Frequency: STEREO Observations. Astrophys. J. 786, 123 (2014). https://doi.org/10.1088/0004-637X/786/2/123
ADS
Article
Google Scholar
Johnson, J.R., Cheng, C.Z.: Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 4421–4424 (2001). https://doi.org/10.1029/2001GL013509
ADS
Article
Google Scholar
Jovanovic, D., Simic, A.: Electron-Temperature-Gradient Instability of Obliquely Propagating Whistlers. Physica Scripta Volume T. 2004, 45–50 (2004). https://doi.org/10.1238/Physica.Topical.113a00045
ADS
Article
Google Scholar
Kahler, S.W.: Solar Sources of Heliospheric Energetic Electron Events—Shocks or Flares? Space Sci. Rev. 129, 359–390 (2007). https://doi.org/10.1007/s11214-007-9143-0
Article
Google Scholar
Kallenrode, M.-B. (2004). Space physics: an introduction to plasmas and particles in the heliosphere and magnetospheres
Kasper, J.C., Lazarus, A.J., Gary, S.P.: Hot Solar-Wind Helium: Direct Evidence for Local Heating by Alfvén-Cyclotron Dissipation. Phys. Rev. Lett. 101, 261103 (2008). https://doi.org/10.1103/PhysRevLett.101.261103
ADS
Article
Google Scholar
Kawazura, Y., Barnes, M., Schekochihin, A.A.: Thermal disequilibration of ions and electrons by collisionless plasma turbulence. Proceedings of the National Academy of Science. 116, 771–776 (2019). https://doi.org/10.1073/pnas.1812491116
ADS
Article
Google Scholar
Kellogg, P.J., Cattell, C.A., Goetz, K., Monson, S.J., Wilson, I., L. B.: Electron trapping and charge transport by large amplitude whistlers. Geophys. Res. Lett. 37, L20106 (2010). https://doi.org/10.1029/2010GL044845
ADS
Article
Google Scholar
Kim, S., Yoon, P.H., Choe, G.S., Moon, Y.J.: Suprathermal Solar Wind Electrons and Langmuir Turbulence. Astrophys. J. 828, 60 (2016). https://doi.org/10.3847/0004-637X/828/1/60
ADS
Article
Google Scholar
Kim, S., Schlickeiser, R., Yoon, P.H., López, R.A., Lazar, M.: Spontaneous emission of electromagnetic fluctuations in Kappa magnetized plasmas. Plasma Physics and Controlled Fusion. 59, 125003 (2017). https://doi.org/10.1088/1361-6587/aa8898
ADS
Article
Google Scholar
Kim, S., Lazar, M., Schlickeiser, R., López, R.A., Yoon, P.H.: Low frequency electromagnetic fluctuations in Kappa magnetized plasmas. Plasma Physics and Controlled Fusion. 60, 075010 (2018). https://doi.org/10.1088/1361-6587/aac1e4
ADS
Article
Google Scholar
Kiyani, K.H., Osman, K.T., Chapman, S.C.: Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philosophical Transactions of the Royal Society of London Series A. 373, 20140155–20140155 (2015). https://doi.org/10.1098/rsta.2014.0155
ADS
Article
Google Scholar
Klein, K.G., Chandran, B.D.G.: Evolution of The Proton Velocity Distribution due to Stochastic Heating in the Near-Sun Solar Wind. Astrophys. J. 820, 47 (2016). https://doi.org/10.3847/0004-637X/820/1/47
ADS
Article
Google Scholar
Klein, K.G., Howes, G.G., TenBarge, J.M., Bale, S.D., Chen, C.H.K., Salem, C.S.: Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence. Astrophys. J. 755, 159 (2012). https://doi.org/10.1088/0004-637X/755/2/159
ADS
Article
Google Scholar
Klein, K.G., Howes, G.G., TenBarge, J.M., Podesta, J.J.: Physical Interpretation of the Angle-dependent Magnetic Helicity Spectrum in the Solar Wind: The Nature of Turbulent Fluctuations near the Proton Gyroradius Scale. Astrophys. J. 785, 138 (2014). https://doi.org/10.1088/0004-637X/785/2/138
ADS
Article
Google Scholar
Klein, K. G., Alexandrova, O., Bookbinder, J., Caprioli, D., Case, A. W., Chandran, B. D. G., et al. (2019). [Plasma 2020 Decadal] Multipoint Measurements of the Solar Wind: A Proposed Advance for Studying Magnetized Turbulence. arXiv e-prints, arXiv:1903.05740
Komarov, S., Schekochihin, A.A., Churazov, E., Spitkovsky, A.: Self-inhibiting thermal conduction in a high-β, whistler-unstable plasma. J. Plasma Phys. 84, 905840305 (2018). https://doi.org/10.1017/S0022377818000399
Article
Google Scholar
Kuzichev, I.V., Vasko, I.Y., Rualdo Soto-Chavez, A., Tong, Y., Artemyev, A.V., Bale, S.D., et al.: Nonlinear Evolution of the Whistler Heat Flux Instability. Astrophys. J. 882, 81 (2019). https://doi.org/10.3847/1538-4357/ab3290
ADS
Article
Google Scholar
Lacombe, C., Alexandrova, O., Matteini, L., Santolík, O., Cornilleau-Wehrlin, N., Mangeney, A., et al.: Whistler Mode Waves and the Electron Heat Flux in the Solar Wind: Cluster Observations. Astrophys. J. 796, 5 (2014). https://doi.org/10.1088/0004-637X/796/1/5
ADS
Article
Google Scholar
Lakhina, G.S.: Electromagnetic Lower Hybrid Instability in the Solar Wind. Ap&SS. 111, 325–334 (1985). https://doi.org/10.1007/BF00649972
ADS
Article
Google Scholar
Lazar, M., Schlickeiser, R., Poedts, S.: On the existence of Weibel instability in a magnetized plasma. I. Parallel wave propagation. Phys. Plasmas. 16, 012106 (2009). https://doi.org/10.1063/1.3072976
ADS
Article
Google Scholar
Lazar, M., Pomoell, J., Poedts, S., Dumitrache, C., Popescu, N.A.: Solar Wind Electron Strahls Associated with a High-Latitude CME: Ulysses Observations. Sol. Phys. 289, 4239–4266 (2014). https://doi.org/10.1007/s11207-014-0558-y
ADS
Article
Google Scholar
Lazar, M., Poedts, S., Fichtner, H.: Destabilizing effects of the suprathermal populations in the solar wind. A&A. 582, A124 (2015). https://doi.org/10.1051/0004-6361/201526509
ADS
Article
Google Scholar
Lazar, M., Fichtner, H., Yoon, P.H.: On the interpretation and applicability of κ-distributions. A&A. 589, A39 (2016). https://doi.org/10.1051/0004-6361/201527593
ADS
Article
Google Scholar
Lazar, M., Kim, S., López, R.A., Yoon, P.H., Schlickeiser, R., Poedts, S.: Suprathermal Spontaneous Emissions in κ-distributed Plasmas. Astrophys. J. 868, L25 (2018). https://doi.org/10.3847/2041-8213/aaefec
ADS
Article
Google Scholar
Le Chat, G., Issautier, K., Meyer-Vernet, N., Zouganelis, I., Maksimovic, M., Moncuquet, M.: Quasi-thermal noise in space plasma: “kappa” distributions. Phys. Plasmas. 16, 102903–102903 (2009). https://doi.org/10.1063/1.3243495
ADS
Article
Google Scholar
Le Chat, G., Issautier, K., Meyer-Vernet, N., Hoang, S.: Large-Scale Variation of Solar Wind Electron Properties from Quasi-Thermal Noise Spectroscopy: Ulysses Measurements. Sol. Phys. 271, 141–148 (2011). https://doi.org/10.1007/s11207-011-9797-3
ADS
Article
Google Scholar
Lemaire, J., Scherer, M.: Kinetic models of the solar wind. J. Geophys. Res. 76, 7479 (1971). https://doi.org/10.1029/JA076i031p07479
ADS
Article
Google Scholar
Levinson, A., Eichler, D.: Inhibition of Electron Thermal Conduction by Electromagnetic Instabilities. Astrophys. J. 387, 212 (1992). https://doi.org/10.1086/171072
ADS
Article
Google Scholar
Li, X., Habbal, S.R.: Electron kinetic firehose instability. J. Geophys. Res. 105, 27377–27386 (2000). https://doi.org/10.1029/2000JA000063
ADS
Article
Google Scholar
Lichko, E., Egedal, J., Daughton, W., Kasper, J.: Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind. Astrophys. J. 850, L28 (2017). https://doi.org/10.3847/2041-8213/aa9a33
ADS
Article
Google Scholar
Maksimovic, M., Pierrard, V., Lemaire, J.F.: A kinetic model of the solar wind with Kappa distribution functions in the corona. A&A. 324, 725–734 (1997)
ADS
Google Scholar
Maksimovic, M., Pierrard, V., Lemaire, J.: On the Exospheric Approach for the Solar Wind Acceleration. Ap&SS. 277, 181–187 (2001). https://doi.org/10.1023/A:1012250027289
ADS
Article
MATH
Google Scholar
Maksimovic, M., Zouganelis, I., Chaufray, J.Y., Issautier, K., Scime, E.E., Littleton, J.E., et al.: Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. (Space Physics). 110, A09104 (2005). https://doi.org/10.1029/2005JA011119
ADS
Article
Google Scholar
Mallet, A., Schekochihin, A.A., Chandran, B.D.G.: Refined critical balance in strong Alfvenic turbulence. MON. NOT. R. ASTRON. SOC. 449, L77–L81 (2015). https://doi.org/10.1093/mnrasl/slv021
ADS
Article
Google Scholar
Maneva, Y.G., Viñas, A.F., Ofman, L.: Turbulent heating and acceleration of He++ ions by spectra of Alfvén-cyclotron waves in the expanding solar wind: 1.5-D hybrid simulations. J. Geophys. Res. (Space Physics). 118, 2842–2853 (2013). https://doi.org/10.1002/jgra.50363
ADS
Article
Google Scholar
Maneva, Y.G., Ofman, L., Viñas, A.: Relative drifts and temperature anisotropies of protons and α particles in the expanding solar wind: 2.5D hybrid simulations. A&A. 578, A85 (2015a). https://doi.org/10.1051/0004-6361/201424401
ADS
Article
Google Scholar
Maneva, Y.G., Viñas, A.F., Moya, P.S., Wicks, R.T., Poedts, S.: Dissipation of Parallel and Oblique Alfvén-Cyclotron Waves—Implications for Heating of Alpha Particles in the Solar Wind. Astrophys. J. 814, 33 (2015b). https://doi.org/10.1088/0004-637X/814/1/33
ADS
Article
Google Scholar
Marsch, E. (2006). Kinetic Physics of the Solar Corona and Solar Wind. Living Rev. Solar Phys. 3, 1. 10.12942/lrsp-2006-1
Marsch, E., Chang, T.: Lower hybrid waves in the solar wind. Geophys. Res. Lett. 9, 1155–1158 (1982). https://doi.org/10.1029/GL009i010p01155
ADS
Article
Google Scholar
Marsch, E., Rosenbauer, H., Schwenn, R., Muehlhaeuser, K.H., Neubauer, F.M.: Solar wind helium ions: obsevations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 35–51 (1982). https://doi.org/10.1029/JA087iA01p00035
ADS
Article
Google Scholar
Marsch, E., Pilipp, W.G., Thieme, K.M., Rosenbauer, H.: Cooling of solar wind electrons inside 0.3 AU. J. Geophys. Res. 94, 6893–6898 (1989). https://doi.org/10.1029/JA094iA06p06893
ADS
Article
Google Scholar
Matthaeus, W.H., Lamkin, S.L.: Turbulent magnetic reconnection. Phys. Fluids. 29, 2513–2534 (1986). https://doi.org/10.1063/1.866004
ADS
Article
Google Scholar
Matthaeus, W.H., Parashar, T.N., Wan, M., Wu, P.: Turbulence and Proton-Electron Heating in Kinetic Plasma. Astrophys. J. 827, L7 (2016). https://doi.org/10.3847/2041-8205/827/1/L7
ADS
Article
Google Scholar
Matthaeus, W. H., Bandyopadhyay, R., Brown, M. R., Borovsky, J., Carbone, V., Caprioli, D., et al. (2019). [Plasma 2020 Decadal] The essential role of multi-point measurements in turbulence investigations: the solar wind beyond single scale and beyond the Taylor Hypothesis. arXiv e-prints, arXiv:1903.06890
Mattoo, S.K., Singh, S.K., Awasthi, L.M., Singh, R., Kaw, P.K.: Experimental Observation of Electron-Temperature-Gradient Turbulence in a Laboratory Plasma. Phys. Rev. Lett. 108, 255007 (2012). https://doi.org/10.1103/PhysRevLett.108.255007
ADS
Article
Google Scholar
Mazzucato, E., Smith, D.R., Bell, R.E., Kaye, S.M., Hosea, J.C., Leblanc, B.P., et al.: Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment. Phys. Rev. Lett. 101, 075001 (2008). https://doi.org/10.1103/PhysRevLett.101.075001
ADS
Article
Google Scholar
McComas, D.J., Bame, S.J., Feldman, W.C., Gosling, J.T., Phillips, J.L.: Solar wind Halo electrons from 1-4 AU. Geophys. Res. Lett. 19, 1291–1294 (1992). https://doi.org/10.1029/92GL00631
ADS
Article
Google Scholar
Meyer-Vernet, N., Perche, C.: Tool kit for antennae and thermal noise near the plasma frequency. J. Geophys. Res. 94, 2405–2415 (1989). https://doi.org/10.1029/JA094iA03p02405
ADS
Article
Google Scholar
Montgomery, M. D. (1972). Average Thermal Characteristics of Solar Wind Electrons, vol. 308. 208
Montgomery, M.D., Bame, S.J., Hundhausen, A.J.: Solar wind electrons: Vela 4 measurements. J. Geophys. Res. 73, 4999 (1968). https://doi.org/10.1029/JA073i015p04999
ADS
Article
Google Scholar
Moon, C., Kaneko, T., Hatakeyama, R.: Dynamics of Nonlinear Coupling between Electron-Temperature-Gradient Mode and Drift-Wave Mode in Linear Magnetized Plasmas. Phys. Rev. Lett. 111, 115001 (2013). https://doi.org/10.1103/PhysRevLett.111.115001
ADS
Article
Google Scholar
Mozer, F.S., Agapitov, O.A., Artemyev, A., Burch, J.L., Ergun, R.E., Giles, B.L., et al.: Magnetospheric Multiscale Satellite Observations of Parallel Electron Acceleration in Magnetic Field Reconnection by Fermi Reflection from Time Domain Structures. Phys. Rev. Lett. 116, 145101 (2016). https://doi.org/10.1103/PhysRevLett.116.145101
ADS
Article
Google Scholar
Mozer, F.S., Agapitov, O.V., Giles, B., Vasko, I.: Direct Observation of Electron Distributions inside Millisecond Duration Electron Holes. Phys. Rev. Lett. 121, 135102 (2018). https://doi.org/10.1103/PhysRevLett.121.135102
ADS
Article
Google Scholar
Osman, K.T., Matthaeus, W.H., Greco, A., Servidio, S.: Evidence for Inhomogeneous Heating in the Solar Wind. Astrophys. J. 727, L11 (2011). https://doi.org/10.1088/2041-8205/727/1/L11
ADS
Article
Google Scholar
Owens, M.J., Crooker, N.U., Schwadron, N.A.: Suprathermal electron evolution in a Parker spiral magnetic field. J. Geophys. Res. (Space Physics). 113, A11104 (2008). https://doi.org/10.1029/2008JA013294
ADS
Article
Google Scholar
Owens, M.J., Lockwood, M., Riley, P., Linker, J.: Sunward Strahl: A Method to Unambiguously Determine Open Solar Flux from In Situ Spacecraft Measurements Using Suprathermal Electron Data. J. Geophys. Res. (Space Physics). 122, 10,980–10,989 (2017). https://doi.org/10.1002/2017JA024631
Article
Google Scholar
Paesold, G., Benz, A.O.: Electron Firehose instability and acceleration of electrons in solar flares. A&A. 351, 741–746 (1999)
ADS
Google Scholar
Parashar, T.N., Matthaeus, W.H.: Propinquity of Current and Vortex Structures: Effects on Collisionless Plasma Heating. Astrophys. J. 832, 57 (2016). https://doi.org/10.3847/0004-637X/832/1/57
ADS
Article
Google Scholar
Parashar, T.N., Servidio, S., Shay, M.A., Breech, B., Matthaeus, W.H.: Effect of driving frequency on excitation of turbulence in a kinetic plasma. Phys. Plasmas. 18, 092302 (2011). https://doi.org/10.1063/1.3630926
ADS
Article
Google Scholar
Parashar, T.N., Matthaeus, W.H., Shay, M.A.: Dependence of Kinetic Plasma Turbulence on Plasma β. Astrophys. J. 864, L21 (2018). https://doi.org/10.3847/2041-8213/aadb8b
ADS
Article
Google Scholar
Penrose, O.: Electrostatic Instabilities of a Uniform Non-Maxwellian Plasma. Phys. Fluids. 3, 258–265 (1960). https://doi.org/10.1063/1.1706024
ADS
Article
MATH
Google Scholar
Perri, S., Balogh, A.: Characterization of Transitions in the Solar Wind Parameters. Astrophys. J. 710, 1286–1294 (2010). https://doi.org/10.1088/0004-637X/710/2/1286
ADS
Article
Google Scholar
Perri, S., Goldstein, M.L., Dorelli, J.C., Sahraoui, F.: Detection of Small-Scale Structures in the Dissipation Regime of Solar-Wind Turbulence. Phys. Rev. Lett. 109, 191101 (2012). https://doi.org/10.1103/PhysRevLett.109.191101
ADS
Article
Google Scholar
Perrone, D., Dendy, R.O., Furno, I., Sanchez, R., Zimbardo, G., Bovet, A., et al.: Nonclassical Transport and Particle-Field Coupling: from Laboratory Plasmas to the Solar Wind. Space Sci. Rev. 178, 233–270 (2013a). https://doi.org/10.1007/s11214-013-9966-9
ADS
Article
Google Scholar
Perrone, D., Valentini, F., Servidio, S., Dalena, S., Veltri, P.: Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind. Astrophys. J. 762, 99 (2013b). https://doi.org/10.1088/0004-637X/762/2/99
ADS
Article
Google Scholar
Perrone, D., Bourouaine, S., Valentini, F., Marsch, E., Veltri, P.: Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations. J. Geophys. Res. (Space Physics). 119, 2400–2410 (2014a). https://doi.org/10.1002/2013JA019564
ADS
Article
Google Scholar
Perrone, D., Valentini, F., Servidio, S., Dalena, S., Veltri, P.: Analysis of intermittent heating in a multi-component turbulent plasma. European Physical Journal D. 68, 209 (2014b). https://doi.org/10.1140/epjd/e2014-50152-1
ADS
Article
Google Scholar
Perrone, D., Alexandrova, O., Mangeney, A., Maksimovic, M., Lacombe, C., Rakoto, V., et al.: Compressive Coherent Structures at Ion Scales in the Slow Solar Wind. Astrophys. J. 826, 196 (2016). https://doi.org/10.3847/0004-637X/826/2/196
ADS
Article
Google Scholar
Perrone, D., Alexandrova, O., Roberts, O.W., Lion, S., Lacombe, C., Walsh, A., et al.: Coherent Structures at Ion Scales in Fast Solar Wind: Cluster Observations. Astrophys. J. 849, 49 (2017). https://doi.org/10.3847/1538-4357/aa9022
ADS
Article
Google Scholar
Perrone, D., Stansby, D., Horbury, T.S., Matteini, L.: Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations. MON. NOT. R. ASTRON. SOC. 483, 3730–3737 (2019). https://doi.org/10.1093/mnras/sty3348
ADS
Article
Google Scholar
Peterson, J.R., Fabian, A.C.: X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006). https://doi.org/10.1016/j.physrep.2005.12.007
ADS
Article
Google Scholar
Pezzi, O., Valentini, F., Veltri, P.: Collisional Relaxation of Fine Velocity Structures in Plasmas. Phys. Rev. Lett. 116, 145001 (2016). https://doi.org/10.1103/PhysRevLett.116.145001
ADS
Article
Google Scholar
Pezzi, O., Perrone, D., Servidio, S., Valentini, F., Sorriso-Valvo, L., Veltri, P.: Proton–Proton Collisions in the Turbulent Solar Wind: Hybrid Boltzmann–Maxwell Simulations. Astrophys. J. 887, 208 (2019). https://doi.org/10.3847/1538-4357/ab5285
ADS
Article
Google Scholar
Phan, T.D., Shay, M.A., Gosling, J.T., Fujimoto, M., Drake, J.F., Paschmann, G., et al.: Electron bulk heating in magnetic reconnection at Earth’s magnetopause: Dependence on the inflow Alfvén speed and magnetic shear. Geophys. Res. Lett. 40, 4475–4480 (2013). https://doi.org/10.1002/grl.50917
ADS
Article
Google Scholar
Phan, T.D., Drake, J.F., Shay, M.A., Gosling, J.T., Paschmann, G., Eastwood, J.P., et al.: Ion bulk heating in magnetic reconnection exhausts at Earth’s magnetopause: Dependence on the inflow Alfvén speed and magnetic shear angle. Geophys. Res. Lett. 41, 7002–7010 (2014). https://doi.org/10.1002/2014GL061547
ADS
Article
Google Scholar
Phan, T.D., Eastwood, J.P., Shay, M.A., Drake, J.F., Sonnerup, B.U.Ö., Fujimoto, M., et al.: Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature. 557, 202–206 (2018). https://doi.org/10.1038/s41586-018-0091-5
ADS
Article
Google Scholar
Phillips, J. L., Gosling, J. T., McComas, D. J., Bame, S. J., and Smith, E. J. (1989). ISEE 3 observations of solar wind thermal electrons with T⊥ > T∥. J. Geophys. Res. 94, 13377–13386. 10.1029/JA094iA10p13377
Pierrard, V.: Solar Wind Electron Transport: Interplanetary Electric Field and Heat Conduction. Space Sci. Rev. 172, 315–324 (2012). https://doi.org/10.1007/s11214-011-9743-6
ADS
Article
Google Scholar
Pilipp, W.G., Miggenrieder, H., Montgomery, M.D., Mühlhäuser, K.H., Rosenbauer, H., Schwenn, R.: Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment. J. Geophys. Res. 92, 1075–1092 (1987a). https://doi.org/10.1029/JA092iA02p01075
ADS
Article
Google Scholar
Pilipp, W.G., Miggenrieder, H., Mühlhäuser, K.H., Rosenbauer, H., Schwenn, R., Neubauer, F.M.: Variations of electron distribution functions in the solar wind. J. Geophys. Res. 92, 1103–1118 (1987b). https://doi.org/10.1029/JA092iA02p01103
ADS
Article
Google Scholar
Pilipp, W.G., Muehlhaeuser, K.H., Miggenrieder, H., Rosenbauer, H., Schwenn, R.: Large-scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. J. Geophys. Res. 95, 6305–6329 (1990). https://doi.org/10.1029/JA095iA05p06305
ADS
Article
Google Scholar
Podesta, J.J.: The need to consider ion Bernstein waves as a dissipation channel of solar wind turbulence. J. Geophys. Res. (Space Physics). 117, A07101 (2012). https://doi.org/10.1029/2012JA017770
ADS
Article
Google Scholar
Podesta, J.J., Gary, S.P.: Effect of Differential Flow of Alpha Particles on Proton Pressure Anisotropy Instabilities in the Solar Wind. Astrophys. J. 742, 41 (2011a). https://doi.org/10.1088/0004-637X/742/1/41
ADS
Article
Google Scholar
Podesta, J.J., Gary, S.P.: Magnetic Helicity Spectrum of Solar-Wind Fluctuations as a Function of the Angle with Respect to the Local Mean Magnetic Field. Astrophys. J. 734, 15 (2011b). https://doi.org/10.1088/0004-637X/734/1/15
ADS
Article
Google Scholar
Quataert, E.: Radiatively Inefficient Accretion Flow Models of Sgr A*. Astronomische Nachrichten Supplement. 324, 435–443 (2003). https://doi.org/10.1002/asna.200385043
ADS
Article
Google Scholar
Ressler, S.M., Tchekhovskoy, A., Quataert, E., Chand ra, M., and Gammie, C. F.: Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion. MON. NOT. R. ASTRON. SOC. 454, 1848–1870 (2015). https://doi.org/10.1093/mnras/stv2084
ADS
Article
Google Scholar
Richardson, J.D., Paularena, K.I., Lazarus, A.J., Belcher, J.W.: Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett. 22, 325–328 (1995). https://doi.org/10.1029/94GL03273
ADS
Article
Google Scholar
Rigby, A., Cruz, F., Albertazzi, B., Bamford, R., Bell, A.R., Cross, J.E., et al.: Electron acceleration by wave turbulence in a magnetized plasma. Nature Physics. 14, 475–479 (2018). https://doi.org/10.1038/s41567-018-0059-2
ADS
Article
Google Scholar
Riquelme, M.A., Quataert, E., Verscharen, D.: PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction. Astrophys. J. 824, 123 (2016). https://doi.org/10.3847/0004-637X/824/2/123
ADS
Article
Google Scholar
Riquelme, M., Quataert, E., Verscharen, D.: PIC Simulations of Velocity-space Instabilities in a Decreasing Magnetic Field: Viscosity and Thermal Conduction. Astrophys. J. 854, 132 (2018). https://doi.org/10.3847/1538-4357/aaa6d1
ADS
Article
Google Scholar
Roberg-Clark, G.T., Drake, J.F., Reynolds, C.S., Swisdak, M.: Suppression of Electron Thermal Conduction in the High β Intracluster Medium of Galaxy Clusters. Astrophys. J. 830, L9 (2016). https://doi.org/10.3847/2041-8205/830/1/L9
ADS
Article
Google Scholar
Roberg-Clark, G.T., Drake, J.F., Swisdak, M., Reynolds, C.S.: Wave Generation and Heat Flux Suppression in Astrophysical Plasma Systems. Astrophys. J. 867, 154 (2018). https://doi.org/10.3847/1538-4357/aae393
ADS
Article
Google Scholar
Roberts, O.W., Alexandrova, O., Kajdič, P., Turc, L., Perrone, D., Escoubet, C.P., et al.: Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales. Astrophys. J. 850, 120 (2017). https://doi.org/10.3847/1538-4357/aa93e5
ADS
Article
Google Scholar
Rosenbauer, H., Schwenn, R., Marsch, E., Meyer, B., Miggenrieder, H., Montgomery, M.D., et al.: A survey on initial results of the HELIOS plasma experiment. Journal of Geophysics Zeitschrift Geophysik. 42, 561–580 (1977)
ADS
Google Scholar
Roxburgh, I.W.: A Note on the Solution of the Saturation Flux Limited Solar Wind Equations. Sol. Phys. 35, 481–487 (1974). https://doi.org/10.1007/BF00151970
ADS
Article
Google Scholar
Ryutov, D.D., Drake, R.P., Remington, B.A.: Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena. ApJS. 127, 465–468 (2000). https://doi.org/10.1086/313320
ADS
Article
Google Scholar
Ryutov, D.D., Kugland, N.L., Park, H.S., Plechaty, C., Remington, B.A., Ross, J.S.: Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field. Plasma Physics and Controlled Fusion. 54, 105021 (2012). https://doi.org/10.1088/0741-3335/54/10/105021
ADS
Article
Google Scholar
Šafránková, J., Němeček, Z., Němec, F., Verscharen, D., Chen, C.H.K., Ďurovcová, T., et al.: Scale-dependent Polarization of Solar Wind Velocity Fluctuations at the Inertial and Kinetic Scales. Astrophys. J. 870, 40 (2019). https://doi.org/10.3847/1538-4357/aaf239
ADS
Article
Google Scholar
Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind. Phys. Rev. Lett. 105, 131101 (2010). https://doi.org/10.1103/PhysRevLett.105.131101
ADS
Article
Google Scholar
Saito, S., Gary, S.P.: Whistler scattering of suprathermal electrons in the solar wind: Particle-in-cell simulations. J. Geophys. Res. (Space Physics). 112, A06116 (2007). https://doi.org/10.1029/2006JA012216
ADS
Article
Google Scholar
Salem, C., Bosqued, J.M., Larson, D.E., Mangeney, A., Maksimovic, M., Perche, C., et al.: Determination of accurate solar wind electron parameters using particle detectors and radio wave receivers. J. Geophys. Res. 106, 21701–21717 (2001). https://doi.org/10.1029/2001JA900031
ADS
Article
Google Scholar
Salem, C., Pulupa, M., Bale, S. D., and Verscharen, D. (2021). Precision Electron Measurements in the Solar Wind at 1 AU from NASA’s Wind Spacecraft. In preparation.
Schekochihin, A. A., Cowley, S. C., Dorland,W., Hammett, G.W., Howes, G. G., Quataert, E., et al. (2009). Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas. ApJS 182, 310–377. https://doi.org/10.1088/0067-0049/182/1/310
Schekochihin, A.A., Parker, J.T., Highcock, E.G., Dellar, P.J., Dorland, W., Hammett, G.W.: Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82, 905820212 (2016). https://doi.org/10.1017/S0022377816000374
Article
Google Scholar
Scherer, K., Fichtner, H., Lazar, M.: Regularized κ-distributions with non-diverging moments. Europhys. Lett. 120, 50002 (2017). https://doi.org/10.1209/0295-5075/120/50002
ADS
Article
Google Scholar
Schreiner, A., Saur, J.: A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations. Astrophys. J. 835, 133 (2017). https://doi.org/10.3847/1538-4357/835/2/133
ADS
Article
Google Scholar
Scime, E.E., Bame, S.J., Feldman, W.C., Gary, S.P., Phillips, J.L., Balogh, A.: Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations. J. Geophys. Res. 99, 23401–23410 (1994). https://doi.org/10.1029/94JA02068
ADS
Article
Google Scholar
Scime, E.E., Bame, S.J., Phillips, J.L., Balogh, A.: Latitudinal Variations in the Solar Wind Electron Heat Flux. Space Sci. Rev. 72, 105–108 (1995). https://doi.org/10.1007/BF00768762
ADS
Article
Google Scholar
Scime, E.E., Badeau, J., Allen, E., Littleton, J.E.: The electron heat flux in the polar solar wind: Ulysses observations. Geophys. Res. Lett. 26, 2129–2132 (1999). https://doi.org/10.1029/1999GL900503
ADS
Article
Google Scholar
Scime, E.E., Littleton, J.E., Gary, S.P., Skoug, R., Lin, N.: Solar cycle variations in the electron heat flux: Ulysses observations. Geophys. Res. Lett. 28, 2169–2172 (2001). https://doi.org/10.1029/2001GL012925
ADS
Article
Google Scholar
Scudder, J.D.: Ion and Electron Suprathermal Tail Strengths in the Transition Region: Support for the Velocity Filtration Model of the Corona. Astrophys. J. 427, 446 (1994). https://doi.org/10.1086/174155
ADS
Article
Google Scholar
Servidio, S., Matthaeus, W.H., Shay, M.A., Cassak, P.A., Dmitruk, P.: Magnetic Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 102, 115003 (2009). https://doi.org/10.1103/PhysRevLett.102.115003
ADS
Article
Google Scholar
Servidio, S., Greco, A., Matthaeus, W.H., Osman, K.T., Dmitruk, P.: Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res. (Space Physics). 116, A09102 (2011). https://doi.org/10.1029/2011JA016569
ADS
Article
Google Scholar
Servidio, S., Osman, K.T., Valentini, F., Perrone, D., Califano, F., Chapman, S., et al.: Proton Kinetic Effects in Vlasov and SolarWind Turbulence. Astrophys. J. 781, L27 (2014). https://doi.org/10.1088/2041-8205/781/2/L27
ADS
Article
Google Scholar
Servidio, S., Chasapis, A., Matthaeus, W.H., Perrone, D., Valentini, F., Parashar, T.N., et al.: Magnetospheric Multiscale Observation of Plasma Velocity-Space Cascade: Hermite Representation and Theory. Phys. Rev. Lett. 119, 205101 (2017). https://doi.org/10.1103/PhysRevLett.119.205101
ADS
Article
Google Scholar
Shaaban, S.M., Lazar, M., Poedts, S.: Clarifying the solar wind heat flux instabilities. MON. NOT. R. ASTRON. SOC. 480, 310–319 (2018a). https://doi.org/10.1093/mnras/sty1567
ADS
Article
Google Scholar
Shaaban, S.M., Lazar, M., Yoon, P.H., Poedts, S.: Beaming electromagnetic (or heat-flux) instabilities from the interplay with the electron temperature anisotropies. Phys. Plasmas. 25, 082105 (2018b). https://doi.org/10.1063/1.5042481
ADS
Article
Google Scholar
Sharma Pyakurel, P., Shay, M.A., Phan, T.D., Matthaeus, W.H., Drake, J.F., TenBarge, J.M., et al.: Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence. Phys. Plasmas. 26, 082307 (2019). https://doi.org/10.1063/1.5090403
ADS
Article
Google Scholar
Shevchenko, V.I., Galinsky, V.L.: Stability of the strahl electron distribution function and its dynamics. Nonlinear Processes in Geophysics. 17, 593–597 (2010). https://doi.org/10.5194/npg-17-593-2010
ADS
Article
Google Scholar
Singh, S.K., Awasthi, L.M., Singh, R., Kaw, P.K., Jha, R., Mattoo, S.K.: Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device. Phys. Plasmas. 18, 102109 (2011). https://doi.org/10.1063/1.3644468
ADS
Article
Google Scholar
Sitnov, M.I., Merkin, V.G., Roytershteyn, V., Swisdak, M.: Kinetic Dissipation Around a Dipolarization Front. Geophys. Res. Lett. 45, 4639–4647 (2018). https://doi.org/10.1029/2018GL077874
ADS
Article
Google Scholar
Slane, P., Bykov, A., Ellison, D. C., Dubner, G., and Castro, D. (2015). Supernova Remnants Interacting with Molecular Clouds: X-Ray and Gamma-Ray Signatures. Space Sci. Rev. 188, 187–210. 10. 1007/s11214-014-0062-6
Sorriso-Valvo, L., Catapano, F., Retinò, A., Le Contel, O., Perrone, D., Roberts, O.W., et al.: Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability. Phys. Rev. Lett. 122, 035102 (2019). https://doi.org/10.1103/PhysRevLett.122.035102
ADS
Article
Google Scholar
Soucek, J., Ahlen, L., Bale, S., Bonnell, J., Boudin, N., Brienza, D., et al. (2016). EMC Aspects of Turbulence Heating ObserveR (THOR) Spacecraft. In ESA Workshop on Aerospace EMS. vol. 738 of ESA Special Publication, 18
Spitzer, L., Härm, R.: Transport Phenomena in a Completely Ionized Gas. Physical Review. 89, 977–981 (1953). https://doi.org/10.1103/PhysRev.89.977
ADS
Article
MATH
Google Scholar
Stawarz, J.E., Ergun, R.E., Goodrich, K.A.: Generation of high-frequency electric field activity by turbulence in the Earth’s magnetotail. J. Geophys. Res. (Space Physics). 120, 1845–1866 (2015). https://doi.org/10.1002/2014JA020166
ADS
Article
Google Scholar
Stawarz, J.E., Eastwood, J.P., Phan, T.D., Gingell, I.L., Shay, M.A., Burch, J.L., et al.: Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth’s Magnetosheath. Astrophys. J. 877, L37 (2019). https://doi.org/10.3847/2041-8213/ab21c8
ADS
Article
Google Scholar
Štverák, S., Trávníček, P., Maksimovic, M., Marsch, E., Fazakerley, A.N., Scime, E.E.: Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. (Space Physics). 113, A03103 (2008). https://doi.org/10.1029/2007JA012733
ADS
Article
Google Scholar
Štverák, S., Maksimovic, M., Trávníček, P.M., Marsch, E., Fazakerley, A.N., Scime, E.E.: Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations. J. Geophys. Res. (Space Physics). 114, A05104 (2009). https://doi.org/10.1029/2008JA013883
ADS
Article
Google Scholar
TenBarge, J.M., Howes, G.G., Dorland, W.: Collisionless Damping at Electron Scales in Solar Wind Turbulence. Astrophys. J. 774, 139 (2013). https://doi.org/10.1088/0004-637X/774/2/139
ADS
Article
Google Scholar
TenBarge, J. M., Alexandrova, O., Boldyrev, S., Califano, F., Cerri, S. S., Chen, C. H. K., et al. (2019). [Plasma 2020 Decadal] Disentangling the Spatiotemporal Structure of Turbulence Using Multi-Spacecraft Data. arXiv e-prints, arXiv:1903.05710
Tong, Y., Vasko, I.Y., Pulupa, M., Mozer, F.S., Bale, S.D., Artemyev, A.V., et al.: Whistler Wave Generation by Halo Electrons in the Solar Wind. Astrophys. J. 870, L6 (2019). https://doi.org/10.3847/2041-8213/aaf734
ADS
Article
Google Scholar
Torbert, R.B., Burch, J.L., Giles, B.L., Gershman, D., Pollock, C.J., Dorelli, J., et al.: Estimates of terms in Ohm’s law during an encounter with an electron diffusion region. Geophys. Res. Lett. 43, 5918–5925 (2016). https://doi.org/10.1002/2016GL069553
ADS
Article
Google Scholar
Torbert, R.B., Burch, J.L., Phan, T.D., Hesse, M., Argall, M.R., Shuster, J., et al.: Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science. 362, 1391–1395 (2018). https://doi.org/10.1126/science.aat2998
ADS
MathSciNet
Article
Google Scholar
Tracy, P.J., Kasper, J.C., Raines, J.M., Shearer, P., Gilbert, J.A., Zurbuchen, T.H.: Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions. Phys. Rev. Lett. 116, 255101 (2016). https://doi.org/10.1103/PhysRevLett.116.255101
ADS
Article
Google Scholar
Tsurutani, B.T., Lin, R.P.: Acceleration of >47 keV ions and >2 keV electrons by interplanetary shocks at 1 AU. J. Geophys. Res. 90, 1–11 (1985). https://doi.org/10.1029/JA090iA01p00001
ADS
Article
Google Scholar
Uritsky, V.M., Pouquet, A., Rosenberg, D., Mininni, P.D., Donovan, E.F.: Structures in magnetohydrodynamic turbulence: Detection and scaling. Phys. Rev. E. 82, 056326 (2010). https://doi.org/10.1103/PhysRevE.82.056326
ADS
Article
Google Scholar
Uzdensky, D.A., Cerutti, B., Begelman, M.C.: Reconnection-powered Linear Accelerator and Gamma-Ray Flares in the Crab Nebula. Astrophys. J. 737, L40 (2011). https://doi.org/10.1088/2041-8205/737/2/L40
ADS
Article
Google Scholar
Valentini, F., Perrone, D., Stabile, S., Pezzi, O., Servidio, S., De Marco, R., et al.: Differential kinetic dynamics and heating of ions in the turbulent solar wind. New Journal of Physics. 18, 125001 (2016). https://doi.org/10.1088/1367-2630/18/12/125001
ADS
Article
Google Scholar
Vasko, I.Y., Krasnoselskikh, V., Tong, Y., Bale, S.D., Bonnell, J.W., Mozer, F.S.: Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind. Astrophys. J. 871, L29 (2019). https://doi.org/10.3847/2041-8213/ab01bd
ADS
Article
Google Scholar
Vazza, F., Eckert, D., Brüggen, M., Huber, B.: Electron and proton acceleration efficiency by merger shocks in galaxy clusters. MON. NOT. R. ASTRON. SOC. 451, 2198–2211 (2015). https://doi.org/10.1093/mnras/stv1072
ADS
Article
Google Scholar
Verscharen, D., Chen, C.H.K., Wicks, R.T.: On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind. Astrophys. J. 840, 106 (2017). https://doi.org/10.3847/1538-4357/aa6a56
ADS
Article
Google Scholar
Verscharen, D., Chandran, B.D.G., Jeong, S.-Y., Salem, C.S., Pulupa, M.P., Bale, S.D.: Self-induced Scattering of Strahl Electrons in the Solar Wind. Astrophys. J. 886, 136 (2019a). https://doi.org/10.3847/1538-4357/ab4c30
ADS
Article
Google Scholar
Verscharen, D., Klein, K.G., Maruca, B.A.: The multi-scale nature of the solar wind. Living Rev. Solar Phys. 16, 5 (2019b). https://doi.org/10.1007/s41116-019-0021-0
ADS
Article
Google Scholar
Vocks, C., Salem, C., Lin, R.P., Mann, G.: Electron Halo and Strahl Formation in the Solar Wind by Resonant Interaction with Whistler Waves. Astrophys. J. 627, 540–549 (2005). https://doi.org/10.1086/430119
ADS
Article
Google Scholar
van Weeren, R.J., Andrade-Santos, F., Dawson, W.A., Golovich, N., Lal, D.V., Kang, H., et al.: The case for electron re-acceleration at galaxy cluster shocks. Nature Astronomy. 1, 0005 (2017). https://doi.org/10.1038/s41550-016-0005
ADS
Article
Google Scholar
Wei, X., Sokolov, V., Sen, A.K.: Experimental production and identification of electron temperature gradient modes. Phys. Plasmas. 17, 042108 (2010). https://doi.org/10.1063/1.3381070
ADS
Article
Google Scholar
Wicks, R.T., Horbury, T.S., Chen, C.H.K., Schekochihin, A.A.: Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. MON. NOT. R. ASTRON. SOC. 407, L31–L35 (2010). https://doi.org/10.1111/j.1745-3933.2010.00898.x
ADS
Article
Google Scholar
Wicks, R.T., Alexander, R.L., Stevens, M., Wilson, I.L.B., Moya, P.S., Viñas, A., et al.: A Proton-cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind. Astrophys. J. 819, 6 (2016). https://doi.org/10.3847/0004-637X/819/1/6
ADS
Article
Google Scholar
Wilder, F.D., Ergun, R.E., Goodrich, K.A., Goldman, M.V., Newman, D.L., Malaspina, D.M., et al.: Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission. Geophys. Res. Lett. 43, 5909–5917 (2016). https://doi.org/10.1002/2016GL069473
ADS
Article
Google Scholar
Woodham, L.D., Wicks, R.T., Verscharen, D., Owen, C.J.: The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales. Astrophys. J. 856, 49 (2018). https://doi.org/10.3847/1538-4357/aab03d
ADS
Article
Google Scholar
Yang, Y., Matthaeus, W.H., Parashar, T.N., Haggerty, C.C., Roytershteyn, V., Daughton, W., et al.: Energy transfer, pressure tensor, and heating of kinetic plasma. Phys. Plasmas. 24, 072306 (2017a). https://doi.org/10.1063/1.4990421
ADS
Article
Google Scholar
Yang, Y., Matthaeus, W.H., Parashar, T.N., Wu, P., Wan, M., Shi, Y., et al.: Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence. Phys. Rev. E. 95, 061201 (2017b). https://doi.org/10.1103/PhysRevE.95.061201
ADS
Article
Google Scholar
Yang, L., Wang, L., Li, G., Wimmer-Schweingruber, R.F., He, J., Tu, C., et al.: The Strongest Acceleration of >40 keV Electrons by ICME-driven Shocks at 1 au. Astrophys. J. 853, 89 (2018). https://doi.org/10.3847/1538-4357/aaa245
ADS
Article
Google Scholar
Yang, L., Wang, L., Li, G., Wimmer-Schweingruber, R.F., He, J., Tu, C., et al.: Electron Acceleration by ICME-driven Shocks at 1 au. Astrophys. J. 875, 104 (2019a). https://doi.org/10.3847/1538-4357/ab1133
ADS
Article
Google Scholar
Yang, Y., Wan, M., Matthaeus, W.H., Sorriso-Valvo, L., Parashar, T.N., Lu, Q., et al.: Scale dependence of energy transfer in turbulent plasma. MON. NOT. R. ASTRON. SOC. 482, 4933–4940 (2019b). https://doi.org/10.1093/mnras/sty2977
ADS
Article
Google Scholar
Yoon, P.H., Kim, S., Choe, G.S., moon, Y. J.: Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function. Astrophys. J. 826, 204 (2016). https://doi.org/10.3847/0004-637X/826/2/204
ADS
Article
Google Scholar
Yoon, P.H., Lazar, M., Scherer, K., Fichtner, H., Schlickeiser, R.: Modified κ-distribution of Solar Wind Electrons and Steady-state Langmuir Turbulence. Astrophys. J. 868, 131 (2018). https://doi.org/10.3847/1538-4357/aaeb94
ADS
Article
Google Scholar
Zakamska, N.L., Narayan, R.: Models of Galaxy Clusters with Thermal Conduction. Astrophys. J. 582, 162–169 (2003). https://doi.org/10.1086/344641
ADS
Article
Google Scholar
Zhdankin, V., Uzdensky, D.A., Perez, J.C., Boldyrev, S.: Statistical Analysis of Current Sheets in Three-dimensional Magnetohydrodynamic Turbulence. Astrophys. J. 771, 124 (2013). https://doi.org/10.1088/0004-637X/771/2/124
ADS
Article
Google Scholar
Zhima, Z., Cao, J., Fu, H., Liu, W., Chen, L., Dunlop, M., et al.: Whistler mode wave generation at the edges of a magnetic dip. J. Geophys. Res. (Space Physics). 120, 2469–2476 (2015). https://doi.org/10.1002/2014JA020786
ADS
Article
Google Scholar
Zouganelis, I., Meyer-Vernet, N., Landi, S., Maksimovic, M., Pantellini, F.: Acceleration of Weakly Collisional Solar-Type Winds. Astrophys. J. 626, L117–L120 (2005). https://doi.org/10.1086/431904
ADS
Article
Google Scholar