Skip to main content
Log in

MeerCRAB: MeerLICHT classification of real and bogus transients using deep learning

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Astronomers require efficient automated detection and classification pipelines when conducting large-scale surveys of the (optical) sky for variable and transient sources. Such pipelines are fundamentally important, as they permit rapid follow-up and analysis of those detections most likely to be of scientific value. We therefore present a deep learning pipeline based on the convolutional neural network architecture called MeerCRAB. It is designed to filter out the so called “bogus” detections from true astrophysical sources in the transient detection pipeline of the MeerLICHT telescope. Optical candidates are described using a variety of 2D images and numerical features extracted from those images. The relationship between the input images and the target classes is unclear, since the ground truth is poorly defined and often the subject of debate. This makes it difficult to determine which source of information should be used to train a classification algorithm. We therefore used two methods for labelling our data (i) thresholding and (ii) latent class model approaches. We deployed variants of MeerCRAB that employed different network architectures trained using different combinations of input images and training set choices, based on classification labels provided by volunteers. The deepest network worked best with an accuracy of 99.5% and Matthews correlation coefficient (MCC) value of 0.989. The best model was integrated to the MeerLICHT transient vetting pipeline, enabling the accurate and efficient classification of detected transients that allows researchers to select the most promising candidates for their research goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Code Availability

MeerCRAB code and pre-trained models are available on Github at https://github.com/Zafiirah13/meercrab and on Zenodo at https://doi.org/10.5281/zenodo.4049943.

Notes

  1. see https://github.com/pmvreeswijk/BlackBOX and https://github.com/pmvreeswijk/ZOGY

  2. see https://www.idia.ac.za/

  3. see https://github.com/astropy/astroscrappy

  4. see https://acstools.readthedocs.io/en/latest/satdet.html

  5. 5 vetters labelled them as bogus and the other 5 as real.

  6. https://github.com/tensorflow/tensorflow

  7. See https://github.com/Zafiirah13/multi_input_frbid and https://github.com/Zafiirah13/FRBID

References

  1. Agarap, A.F.: Deep Learning using Rectified Linear Units (ReLU). arXiv:1803.08375 (2018)

  2. Bellm, E.C., Kulkarni, S.R., Graham, M.J., et al.: The Zwicky Transient Facility: System Overview, Performance, and First Results. PASP 131, 018002 (2019)

    Article  ADS  Google Scholar 

  3. Bertin, E.: Automated Morphometry with SExtractor and PSFEx. In: Evans, I.N., Accomazzi, A., Mink, D.J., Rots, A.H. (eds.) Astronomical Data Analysis Software and Systems XX, vol. 442, p. 435. Astronomical Society of the Pacific Conference Series (2011)

  4. Bertin, E., Arnouts, S.: SExtractor: Software for source extraction. A&AS, vol 117 (1996)

  5. Bloemen, S., Groot, P., Woudt, P., et al.: MeerLICHT and BlackGEM: custom-built telescopes to detect faint optical transients. In: SPIE, vol. 9906, p. 990664. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2016)

  6. Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P. A., Maureira, J.-C.: Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection. ApJ 836, 97 (2017)

    Article  ADS  Google Scholar 

  7. Chollet, F., et al.: Keras: The Python Deep Learning library (2018)

  8. Drake, A.J., Djorgovski, S.G., Mahabal, A., et al.: First Results from the Catalina Real-Time Transient Survey. ApJ 696, 870 (2009)

    Article  ADS  Google Scholar 

  9. Edwards, A.L.: Note on the “correction for continuity” in testing the significance of the difference between correlated proportions. Psychometrika, p. 13 (1948)

  10. Formann, A.: K. Die latent-class-analyse, Einführung in Theorie und Anwendung (Beltz (1984)

    Google Scholar 

  11. Gaia Collaboration, Brown, A.G.A., Vallenari, A., et al.: Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. A&A 595, A2 (2016)

    Article  ADS  Google Scholar 

  12. Gieseke, F., Bloemen, S., van den Bogaard, C., et al.: Convolutional neural networks for transient candidate vetting in large-scale surveys. MNRAS 472, 3101 (2017)

    Article  ADS  Google Scholar 

  13. Groot, P.J.: The multi-colour dynamic Universe explored. Nature Astronomy 3, 1160 (2019)

    Article  ADS  Google Scholar 

  14. Han, B., Yao, Q., Yu, X., et al.: Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels. arXiv:1804.06872 (2018)

  15. Hosenie, Z., Lyon, R., Stappers, B., Mootoovaloo, A., McBride, V.: Imbalance learning for variable star classification. MNRAS 493, 6050 (2020)

    Article  ADS  Google Scholar 

  16. Hosenie, Z., Lyon, R.J., Stappers, B.W., Mootoovaloo, A.: Comparing Multiclass, Binary, and Hierarchical Machine Learning Classification schemes for variable stars. MNRAS 488, 4858 (2019)

    Article  ADS  Google Scholar 

  17. Jonas, J., MeerKAT Team: The MeerKAT Radio Telescope. In: MeerKAT Science: On the Pathway to the SKA, p. 1 (2016)

  18. Kaiser, N., Burgett, W., Chambers, K., et al.: The Pan-STARRS wide-field optical/NIR imaging survey. In: SPIE, vol .7733, p. 77330E. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2010)

  19. Keller, S.C., Schmidt, B.P., Bessell, M.S., et al.: The SkyMapper Telescope and The Southern Sky Survey. Publ. Astron. Soc. 826 Australia, vol. 24, p. 1 (2007)

  20. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014)

  21. Lang, D., Hogg, D.W., Mierle, K., Blanton, M., Roweis, S.: Astrometry.net: Blind Astrometric Calibration of Arbitrary Astronomical Images. AJ 139, 1782 (2010)

    Article  ADS  Google Scholar 

  22. Lecun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object Recognition with Gradient-Based Learning (1999)

  23. Lin, H., Li, X., Zeng, Q.: Pulsar Candidate Sifting Using Multi-input Convolution Neural Networks. arXiv:2007.14843 (2020)

  24. LSST Science Collaboration, Abell, P.A., Allison, J., et al.: LSST Science Book, Version 2.0. arXiv:0912.0201 (2009)

  25. McCutcheon, A.L.: Latent class analysis, 64. Sage (1987)

  26. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12, 12 (1947)

    Article  Google Scholar 

  27. Muthukrishna, D., Narayan, G., Mandel, K.S., Biswas, R., Hložek, R.: RAPID: Early Classification of Explosive Transients Using Deep Learning. PASP 131, 118002 (2019)

    Article  ADS  Google Scholar 

  28. Paterson, K. In: Griffin, R.E. (ed.) Southern Horizons in Time-Domain Astronomy, vol. 339, pp. 203–203. IAU Symposium (2019)

  29. Rau, A., Kulkarni, S.R., Law, N.M., et al.: Exploring the Optical Transient Sky with the Palomar Transient Factory. PASP 121, 1334 (2009)

    Article  ADS  Google Scholar 

  30. Richards, J.W., Starr, D.L., Butler, N.R., et al.: On Machine-learned Classification of Variable Stars with Sparse and Noisy Time-series Data. ApJ 733, 10 (2011)

    Article  ADS  Google Scholar 

  31. Shappee, B.J., Prieto, J.L., Grupe, D., et al.: The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617. ApJ, p. 788 (2014)

  32. Vafaei Sadr, A., Vos, E.E., Bassett, B.A., et al.: DEEPSOURCE: point source detection using deep learning. MNRAS 484, 2793 (2019)

    Article  ADS  Google Scholar 

  33. van Dokkum, P.G.: Cosmic-Ray Rejection by Laplacian Edge Detection. PASP 113, 1420 (2001)

    Article  ADS  Google Scholar 

  34. Zackay, B., Ofek, E.O., Gal-Yam, A.: Proper Image Subtraction-Optimal Transient Detection, Photometry, and Hypothesis Testing. ApJ 830, 27 (2016)

    Article  ADS  Google Scholar 

  35. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv:1611.03530 (2016)

Download references

Acknowledgements

We thank the referee for useful comments and suggestions for improving this paper. We would like to thank the people who gave up their time to do the vetting of the sample: Laura Driessen, Naomi titus, Mark Beijer, Nadia Blagorodnova, Joris Kersten, David Modiano and Roque Ruiz Carmona, without whose effort this work would not have been possible. We would like to also thank Arrykrishna Mootoovaloo and Fabian Gieseke for useful discussion. The MeerLICHT consortium is a partnership between Radboud University, the University of Cape Town, the Netherlands Organisation for Scientific Research (NWO), the South African Astronomical Observatory (SAAO), the University of Oxford, the University of Manchester and the University of Amsterdam, in association with and, partly supported by, the South African Radio Astronomy Observatory (SARAO), the European Research Council and the Netherlands Research School for Astronomy (NOVA).

Funding

ZH acknowledges support from the UK Newton Fund as part of the Development in Africa with Radio Astronomy (DARA) Big Data project delivered via the Science & Technology Facilities Council (STFC). BWS acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 694745). PJG and SDW are supported by NRF SARChI Grant 111692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafiirah Hosenie.

Additional information

Availability of Data and Material

Data will be available upon request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosenie, Z., Bloemen, S., Groot, P. et al. MeerCRAB: MeerLICHT classification of real and bogus transients using deep learning. Exp Astron 51, 319–344 (2021). https://doi.org/10.1007/s10686-021-09757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09757-1

Keywords

Navigation