Skip to main content
Log in

Lunar or space-based hypertelescope for direct high-resolution imaging

  • Short Communication
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Following the testing of a pathfinder hypertelescope in the southern Alps, versions usable on the Moon or in space are proposed. The large resolution gain expected for direct imaging in a narrow “Direct Imaging Field”, with a high limiting magnitude, is of interest for many astrophysical targets and for searching for exolife on nearby exoplanets. The much larger field-of-view obtainable with multi-field focal optics, for full-sky coverage in a few days of scanning, is suitable for searching, detecting, and tracking Potentially Hazardous Asteroids with a cluster of hypertelescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amaro-Seoane, P., Audley, H., Babak, S., et al.: LISA – Laser Interferometer Space Antenna (2017). https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf

    Google Scholar 

  2. Delpech, M., Malbet, F., Karlsson, T., Larsson, R., Léger, A., Jorgensen, J.: Flight demonstration of formation flying capabilities for future missions (NEAT pathfinder). Acta. Astronaut. 105(1), 82–94 (2014). (ISSN 0094-5765)

    Article  ADS  Google Scholar 

  3. Gezari, D.Y., Lyon, R.G., Woodruff, R.A., Labeyrie, A.: Large sparse aperture densified pupil hyper-telescope concept for ground-based detection of extrasolar planets, Proceedings Volume 4860, High-Contrast Imaging for Exo-Planet Detection; (2003). https://doi.org/10.1117/12.457673

  4. Labeyrie, A.: Standing wave and pellicle: a possible approach to very large space telescopes. Astron. Astrophys. 77, L1–L2 (1979)

    ADS  Google Scholar 

  5. Labeyrie, A.: Resolved imaging of extra-solar planets with future 10-100 km optical interferometric arrays. Astron. Astrophys. Suppl. Ser. 118, 517–524 (1996)

    Article  ADS  Google Scholar 

  6. Labeyrie, A.: Hypertelescopes and exo-Earth coronagraphy, in Earth-like planets and Moons. Proc. ESLAB 36 Symposium, ESA SP-514, (2002)

  7. Labeyrie, A.: Comparison of ELTs, interferometers and hypertelescopes for deep field imaging and coronagraphy. Comptes Rendus de l’Académie des Sciences-Physique. 8(3-4), 426–437 (2007). https://doi.org/10.1016/j.crhy.2007.03.003

    Article  ADS  Google Scholar 

  8. Labeyrie, A.: Hypertelescopes: potential science gains, current testing and prospects in space, in Mathematical Tools for Instrumentation & Signal Processing in Astronomy, D. Mary, R. Flamary, C. Theys & C. Aime (eds), EAS Publication Series, 78-79 (2016). 45-70. https://doi.org/10.1051/eas/1678004

  9. Labeyrie, A.: Multi-pixel imaging of exoplanets with a Hypertelescope in space. In: Deeg, H., Belmonte, J. (eds.) Handbook of Exoplanets. Springer (2018). https://doi.org/10.1007/978-3-319-55333-7_168

  10. Labeyrie, A., Lipson, S.G., Nisenson, P.: An Introduction to Optical Stellar Interferometry, Cambridge University Press (2006)

  11. Labeyrie, A., Le Coroller, H., Dejonghe, J., et al.: Luciola hypertelescope space observatory: versatile, upgradable high-resolution imaging, from stars to deep-field cosmology. Exp. Astron. 23, 463–490 (2009). https://doi.org/10.1007/s10686-008-9123-8

    Article  ADS  Google Scholar 

  12. Labeyrie, A., Le Coroller, H., Residori, S., Bortolozzo, U., Huignard, J.P., Riaud, P.: Resolved Imaging of Extra-solar Photosynthesis Patches with a Laser Driven Hypertelescope Flotilla, in Pathways Towards Habitable Planets, ASP Conference Series, vol. 430, (2010). Coudé du Foresto, Gelinas & Ribas, eds. https://ui.adsabs.harvard.edu/abs/2010ASPC..430..239L/abstract

  13. Labeyrie, A., Riaud, P., Residori, S., Bortolozzo, U., Vakili, F.: Hypertelescope Optical Observatory (HOO): 1 to 100km flotilla for direct images at micro-arcsecond resolution on stars, exo-planets and deep fields. Proposal submitted to the European Space Agency, (2013). https://lise.oca.eu/IMG/file/WhitepaperProposalHypertelescope.pdf

  14. Lacour, S., Nowak, M., Wang, J., et al.: First direct detection of an exoplanet by optical interferometry - Astrometry and K-band spectroscopy of HR 8799 e, A&A 623, L11 (2019). https://doi.org/10.1051/0004-6361/201935253

  15. Lardière, O., Martinache, F., Patru, F.: Direct imaging with highly diluted apertures I. field of-view limitations. Mon. Not. R. Astron. Soc. 375, 977–988 (2007). https://doi.org/10.1111/j.1365-2966.2006.11362.x

    Article  ADS  Google Scholar 

  16. McCormack, E. F., et al.: Laser Trapped Mirrors, NASA/NIAC study, (2002). http://www.niac.usra.edu/files/library/meetings/annual/oct05/1202McCormack.pdf

  17. Mourard, D., Labeyrie, A., Lepine, T., et al.: Progress of the Ubaye hypertelescope project. Exp. Astron. 46, 561–571 (2018). https://doi.org/10.1007/s10686-018-9596-z

    Article  ADS  Google Scholar 

  18. Mourard, D., Croix, R., Lacamp, B., et al.: Video recording of Vega’s image tracking with the Ubaye Hypertelescope, (2019) https://hypertelescope.org/hypertelescope-en/, https://youtu.be/_M58y-EtkG4, https://youtu.be/rqj2OMuFO78

  19. Pearson, J., Levin, E., Oldson, J., Wykes, H.: Lunar Space Elevators for Cislunar Space Development – Phase 1 Final Technical Report (2005). https://isulibrary.isunet.edu/index.php?lvl=notice_display&id=10236

  20. Tcherniavski, I.: Possibility of detection of earth-like exo-planets and recognition of their surface areas with a hypertelescope. Opt. Eng. 53(2), 023106 (2014). https://doi.org/10.1117/1.OE.53.2.023106

    Article  ADS  Google Scholar 

  21. Xie, Z., Lepine, T., Houllier, T., et al.: Hypertelescope with multiplexed fields of view. Opt. Lett. 45(7), 1878–1881 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Many persons, including amateur astronomers and other citizen scientists, have contributed to hypertelescope research since its beginnings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Labeyrie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labeyrie, A., Mourard, D. & Schneider, J. Lunar or space-based hypertelescope for direct high-resolution imaging. Exp Astron 51, 1003–1011 (2021). https://doi.org/10.1007/s10686-021-09747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09747-3

Keywords

Navigation