Skip to main content
Log in

Voyage through the hidden physics of the cosmic web

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The majority of the ordinary matter in the local Universe has been heated by strong structure formation shocks and resides in a largely unexplored hot, diffuse, X-ray emitting plasma that permeates the halos of galaxies, galaxy groups and clusters, and the cosmic web. We propose a next-generation “Cosmic Web Explorer” that will permit a complete and exhaustive understanding of these unseen baryons. This will be the first mission capable to reach the accretion shocks located several times farther than the virial radii of galaxy clusters, and reveal the out-of-equilibrium parts of the intra-cluster medium which are live witnesses to the physics of cosmic accretion. It will also enable a view of the thermodynamics, kinematics, and chemical composition of the circumgalactic medium in galaxies with masses similar to the Milky Way, at the same level of detail that Athena will unravel for the virialized regions of massive galaxy clusters, delivering a transformative understanding of the evolution of those galaxies in which most of the stars and metals in the Universe were formed. Finally, the proposed X-ray satellite will connect the dots of the large-scale structure by mapping, at high spectral resolution, as much as 100% of the diffuse gas hotter than 106 K that fills the filaments of the cosmic web at low redshifts, down to an over-density of 1, both in emission and in absorption against the ubiquitous cosmic X-ray background, surveying at least 1600 square degrees over 5 years in orbit. This requires a large effective area (\(\sim \)10 m2 at 1 keV) over a large field of view (\(\sim 1\) deg2), a megapixel cryogenic microcalorimeter array providing integral field spectroscopy with a resolving power E/ΔE = 2000 at 0.6 keV and a spatial resolution of 5\(^{\prime \prime }\) in the soft X-ray band, and a low and stable instrumental background ensuring high sensitivity to faint, extended emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. the radius within which the mean enclosed density is 200 times the critical density at the redshift of the cluster.

  2. https://global.jaxa.jp/projects/sas/xrism/

  3. https://www.the-athena-x-ray-observatory.eu/

  4. Observations of 1 Ms can probe OVIII emission down to a limiting flux of 6 × 10− 12 photons/s/cm2/arcmin2.

  5. http://hubs.phys.tsinghua.edu.cn/en/

  6. https://www.desi.lbl.gov

  7. https://www.euclid-ec.org/

  8. https://www.lsst.org/

  9. http://spherex.caltech.edu/index.html

References

  1. Nelson, K., Lau, E.T., Nagai, D., Rudd, D.H., Yu, L.: Weighing Galaxy Clusters with Gas. II. On the Origin of Hydrostatic Mass Bias in ΛCDM Galaxy Clusters. ApJ 782, 107 (2014). https://doi.org/10.1088/0004-637X/782/2/107. 1308.6589

    Article  ADS  Google Scholar 

  2. Ryu, D., Kang, H., Hallman, E., Jones, T.W.: Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe. ApJ 593, 599–610 (2003). https://doi.org/10.1086/376723. arXiv:astro-ph/0305164

    Article  ADS  Google Scholar 

  3. Molnar, S.M., Hearn, N., Haiman, Z., Bryan, G., Evrard, A.E., Lake, G.: Accretion Shocks in Clusters of Galaxies and Their SZ Signature from Cosmological Simulations. ApJ 696, 1640–1656 (2009). https://doi.org/10.1088/0004-637X/696/2/1640. arXiv:0902.3323

    Article  ADS  Google Scholar 

  4. Walker, S., Simionescu, A., Nagai, D., Okabe, N., Eckert, D., Mroczkowski, T., Akamatsu, H., Ettori, S., Ghirardini, V.: The Physics of Galaxy Cluster Outskirts. Space Science Reviews 215, 7 (2019). https://doi.org/10.1007/s11214-018-0572-8. arXiv:1810.00890

    Article  ADS  Google Scholar 

  5. Zinger, E., Dekel, A., Birnboim, Y., Kravtsov, A., Nagai, D.: The role of penetrating gas streams in setting the dynamical state of galaxy clusters. MNRAS 461, 412–432 (2016). https://doi.org/10.1093/mnras/stw1283. arXiv:1510.05388

    Article  ADS  Google Scholar 

  6. Zinger, E., Dekel, A., Birnboim, Y., Nagai, D., Lau, E., Kravtsov, A.V.: Cold fronts and shocks formed by gas streams in galaxy clusters. MNRAS 476, 56–70 (2018). https://doi.org/10.1093/mnras/sty136. arXiv:1609.05308

    Article  ADS  Google Scholar 

  7. Nagai, D., Lau, E.T.: Gas Clumping in the Outskirts of ΛCDM Clusters. ApJ 731, L10 (2011). https://doi.org/10.1088/2041-8205/731/1/L10. arXiv:1103.0280

    Article  ADS  Google Scholar 

  8. Zhuravleva, I., Churazov, E., Kravtsov, A., Lau, E.T., Nagai, D., Sunyaev, R.: Quantifying properties of ICM inhomogeneities. MNRAS 428, 3274–3287 (2013). https://doi.org/10.1093/mnras/sts275. arXiv:1210.6706

    Article  ADS  Google Scholar 

  9. Roncarelli, M., Ettori, S., Borgani, S., Dolag, K., Fabjan, D., Moscardini, L.: Large-scale inhomogeneities of the intracluster medium: improving mass estimates using the observed azimuthal scatter. MNRAS 432, 3030–3046 (2013). https://doi.org/10.1093/mnras/stt654. arXiv:1303.6506

    Article  ADS  Google Scholar 

  10. Vazza, F., Eckert, D., Simionescu, A., Brüggen, M., Ettori, S.: Properties of gas clumps and gas clumping factor in the intra-cluster medium. MNRAS 429, 799–814 (2013). https://doi.org/10.1093/mnras/sts375. arXiv:1211.1695

    Article  ADS  Google Scholar 

  11. Battaglia, N., Bond, J.R., Pfrommer, C., Sievers, J.L.: On the Cluster Physics of Sunyaev-Zel’dovich and X-Ray Surveys. IV. Characterizing Density and Pressure Clumping due to Infalling Substructures. ApJ 806, 43 (2015). https://doi.org/10.1088/0004-637X/806/1/43. arXiv:1405.3346

    Article  ADS  Google Scholar 

  12. Urban, O., Simionescu, A., Werner, N., Allen, S.W., Ehlert, S., Zhuravleva, I., Morris, R.G., Fabian, A.C., Mantz, A., Nulsen, P.E.J., Sanders, J.S., Takei, Y.: Azimuthally resolved X-ray spectroscopy to the edge of the Perseus Cluster. MNRAS 437, 3939–3961 (2014). https://doi.org/10.1093/mnras/stt2209. arXiv:1307.3592

    Article  ADS  Google Scholar 

  13. Simionescu, A., Werner, N., Urban, O., Allen, S.W., Fabian, A.C., Mantz, A., Matsushita, K., Nulsen, P.E.J., Sanders, J.S., Sasaki, T., Sato, T., Takei, Y., Walker, S.A.: Thermodynamics of the Coma Cluster Outskirts. ApJ 775, 4 (2013). https://doi.org/10.1088/0004-637X/775/1/4. arXiv:1302.4140

    Article  ADS  Google Scholar 

  14. Simionescu, A., Werner, N., Mantz, A., Allen, S.W., Urban, O.: Witnessing the growth of the nearest galaxy cluster: thermodynamics of the Virgo Cluster outskirts. MNRAS 469, 1476–1495 (2017). https://doi.org/10.1093/mnras/stx919. arXiv:1704.01236

    Article  ADS  Google Scholar 

  15. Morandi, A., Cui, W.: Measuring the gas clumping in Abell 133. MNRAS 437, 1909–1917 (2014). https://doi.org/10.1093/mnras/stt2021. arXiv:1306.6336

    Article  ADS  Google Scholar 

  16. Ghirardini, V., Eckert, D., Ettori, S., Pointecouteau, E., Molendi, S., Gaspari, M., Rossetti, M., De Grandi, S., Roncarelli, M., Bourdin, H., Mazzotta, P., Rasia, E., Vazza, F.: Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample. A&A 621, A41 (2019). https://doi.org/10.1051/0004-6361/201833325. arXiv:1805.00042

    Article  ADS  Google Scholar 

  17. Ettori, S., Ghirardini, V., Eckert, D., Pointecouteau, E., Gastaldello, F., Sereno, M., Gaspari, M., Ghizzardi, S., Roncarelli, M., Rossetti, M.: Hydrostatic mass profiles in X-COP galaxy clusters. A&A 621, A39 (2019). https://doi.org/10.1051/0004-6361/201833323. arXiv:1805.00035

    Article  ADS  Google Scholar 

  18. Simionescu, A., Allen, S.W., Mantz, A., Werner, N., Takei, Y., Morris, R.G., Fabian, A.C., Sanders, J.S., Nulsen, P.E.J., George, M.R., Taylor, G.B.: Baryons at the Edge of the X-ray-Brightest Galaxy Cluster. Science 331, 1576– (2011). https://doi.org/10.1126/science.1200331. arXiv:1102.2429

    Article  ADS  Google Scholar 

  19. Eckert, D., Vazza, F., Ettori, S., Molendi, S., Nagai, D., Lau, E.T., Roncarelli, M., Rossetti, M., Snowden, S.L., Gastaldello, F.: The gas distribution in the outer regions of galaxy clusters. A&A 541, A57 (2012). https://doi.org/10.1051/0004-6361/201118281. arXiv:1111.0020

    Article  ADS  Google Scholar 

  20. Eckert, D., Roncarelli, M., Ettori, S., Molendi, S., Vazza, F., Gastaldello, F., Rossetti, M.: Gas clumping in galaxy clusters. MNRAS 447, 2198–2208 (2015). https://doi.org/10.1093/mnras/stu2590. arXiv:1310.8389

    Article  ADS  Google Scholar 

  21. Tchernin, C., Eckert, D., Ettori, S., Pointecouteau, E., Paltani, S., Molendi, S., Hurier, G., Gastaldello, F., Lau, E.T., Nagai, D., Roncarelli, M., Rossetti, M.: The XMM Cluster Outskirts Project (X-COP): Physical conditions of Abell 2142 up to the virial radius. A&A 595, A42 (2016). https://doi.org/10.1051/0004-6361/201628183. arXiv:1606.05657

    Article  ADS  Google Scholar 

  22. Werner, N., Finoguenov, A., Kaastra, J.S., Simionescu, A., Dietrich, J.P., Vink, J., Böhringer, H.: Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223. A&A 482(3), L29–L33 (2008). https://doi.org/10.1051/0004-6361:200809599. arXiv:0803.2525

    Article  ADS  Google Scholar 

  23. Eckert, D., Jauzac, M., Shan, H., Kneib, J.-P., Erben, T., Israel, H., Jullo, E., Klein, M., Massey, R., Richard, J., Tchernin, C.: Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015). https://doi.org/10.1038/nature16058. arXiv:1512.00454

    Article  ADS  Google Scholar 

  24. Connor, T., Kelson, D.D., Mulchaey, J., Vikhlinin, A., Patel, S.G., Balogh, M.L., Joshi, G., Kraft, R., Nagai, D., Starikova, S.: Wide-field Optical Spectroscopy of Abell 133: A Search for Filaments Reported in X-Ray Observations. ApJ 867(1), 25 (2018). https://doi.org/10.3847/1538-4357/aae38b. arXiv:1809.08241

    Article  ADS  Google Scholar 

  25. Reiprich, T.H., Veronica, A., Pacaud, F., Ramos-Ceja, M.E., Ota, N., Sanders, J., Kara, M., Erben, T., Klein, M., Erler, J., Kerp, J., Hoang, D.N., Brüggen, M., Marvil, J., Rudnick, L., Biffi, V., Dolag, K., Aschersleben, J., Basu, K., Brunner, H., Bulbul, E., Dennerl, K., Eckert, D., Freyberg, M., Gatuzz, E., Ghirardini, V., Käfer, F., Merloni, A., Migkas, K., Nandra, K., Predehl, P., Robrade, J., Salvato, M., Whelan, B., Diaz-Ocampo, A., Hernandez-Lang, D., Zenteno, A., Brown, M.J.I., Collier, J.D., Diego, J.M., Hopkins, A.M., Kapinska, A., Koribalski, B., Mroczkowski, T., Norris, R.P., O’Brien, A., Vardoulaki, E.: The Abell 3391/95 galaxy cluster system: A 15 Mpc intergalactic medium emission filament, a warm gas bridge, infalling matter clumps, and (re-) accelerated plasma discovered by combining SRG/eROSITA data with ASKAP/EMU and DECam data, vol. 647. https://ui.adsabs.harvard.edu/abs/2021A%26A...647A...2R/abstract (2021)

  26. Gaspari, M., Churazov, E., Nagai, D., Lau, E.T., Zhuravleva, I.: The relation between gas density and velocity power spectra in galaxy clusters: High-resolution hydrodynamic simulations and the role of conduction. A&A 569, A67 (2014). https://doi.org/10.1051/0004-6361/201424043. arXiv:1404.5302

    Article  ADS  Google Scholar 

  27. ZuHone, J.A., Markevitch, M., Zhuravleva, I.: Mapping the Gas Turbulence in the Coma Cluster: Predictions for Astro-H. ApJ 817(2), 110 (2016). https://doi.org/10.3847/0004-637X/817/2/110. arXiv:1505.07848

    Article  ADS  Google Scholar 

  28. Shi, X., Nagai, D., Lau, E.T.: Multiscale analysis of turbulence evolution in the density-stratified intracluster medium. MNRAS 481, 1075–1082 (2018). https://doi.org/10.1093/mnras/sty2340. arXiv:1806.05056

    Article  ADS  Google Scholar 

  29. Zhuravleva, I., Churazov, E., Schekochihin, A.A., Allen, S.W., Arévalo, P., Fabian, A.C., Forman, W.R., Sanders, J.S., Simionescu, A., Sunyaev, R., Vikhlinin, A., Werner, N.: Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014). https://doi.org/10.1038/nature13830. arXiv:1410.6485

    Article  ADS  Google Scholar 

  30. Khatri, R., Gaspari, M.: Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with Planck. MNRAS 463, 655–669 (2016). https://doi.org/10.1093/mnras/stw2027. arXiv:1604.03106

    Article  ADS  Google Scholar 

  31. Eckert, D., Gaspari, M., Owers, M.S., Roediger, E., Molendi, S., Gastaldello, F., Paltani, S., Ettori, S., Venturi, T., Rossetti, M., Rudnick, L.: Deep Chandra observations of the stripped galaxy group falling into Abell 2142. A&A 605, A25 (2017). https://doi.org/10.1051/0004-6361/201730555. arXiv:1705.05844

    Article  ADS  Google Scholar 

  32. Siegel, S.R., Sayers, J., Mahdavi, A., Donahue, M., Merten, J., Zitrin, A., Meneghetti, M., Umetsu, K., Czakon, N.G., Golwala, S.R., Postman, M., Koch, P.M., Koekemoer, A.M., Lin, K.-Y., Melchior, P., Molnar, S.M., Moustakas, L., Mroczkowski, T.K., Pierpaoli, E., Shitanishi, J.: Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data. ApJ 861, 71 (2018). https://doi.org/10.3847/1538-4357/aac5f8

    Article  ADS  Google Scholar 

  33. Eckert, D., Ghirardini, V., Ettori, S., Rasia, E., Biffi, V., Pointecouteau, E., Rossetti, M., Molendi, S., Vazza, F., Gastaldello, F.: Non-thermal pressure support in X-COP galaxy clusters. A&A 621, A40 (2019). https://doi.org/10.1051/0004-6361/201833324. arXiv:1805.00034

    Article  ADS  Google Scholar 

  34. Hitomi Collaboration, Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A.: Atmospheric gas dynamics in the Perseus cluster observed with Hitomi. PASJ 70(2), 9 (2018). https://doi.org/10.1093/pasj/psx138. arXiv:1711.00240

    Article  ADS  Google Scholar 

  35. Lau, E.T., Gaspari, M., Nagai, D., Coppi, P.: Physical Origins of Gas Motions in Galaxy Cluster Cores: Interpreting Hitomi Observations of the Perseus Cluster. ApJ 849(1), 54 (2017). https://doi.org/10.3847/1538-4357/aa8c00. arXiv:1705.06280

    Article  ADS  Google Scholar 

  36. Bourne, M.A., Sijacki, D.: AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence. MNRAS 472(4), 4707–4735 (2017). https://doi.org/10.1093/mnras/stx2269. arXiv:1705.07900

    Article  ADS  Google Scholar 

  37. Ota, N., Nagai, D., Lau, E.T.: Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy. PASJ 70(3), 51 (2018). https://doi.org/10.1093/pasj/psy040. arXiv:1507.02730

    Article  ADS  Google Scholar 

  38. Roncarelli, M., Gaspari, M., Ettori, S., Biffi, V., Brighenti, F., Bulbul, E., Clerc, N., Cucchetti, E., Pointecouteau, E., Rasia, E.: Measuring turbulence and gas motions in galaxy clusters via synthetic Athena X-IFU observations. A&A 618, A39 (2018). https://doi.org/10.1051/0004-6361/201833371. arXiv:1805.02577

    Article  ADS  Google Scholar 

  39. Cucchetti, E., Clerc, N., Pointecouteau, E., Peille, P., Pajot, F.: Towards mapping turbulence in the intra-cluster medium. II. Measurement uncertainties in the estimation of structure functions. A&A 629, A144 (2019). https://doi.org/10.1051/0004-6361/201935677. arXiv:1904.06249

    Article  ADS  Google Scholar 

  40. Lau, E.T., Kravtsov, A.V., Nagai, D.: Residual Gas Motions in the Intracluster Medium and Bias in Hydrostatic Measurements of Mass Profiles of Clusters. ApJ 705, 1129–1138 (2009). https://doi.org/10.1088/0004-637X/705/2/1129. arXiv:0903.4895

    Article  ADS  Google Scholar 

  41. Vazza, F., Angelinelli, M., Jones, T.W., Eckert, D., Brüggen, M., Brunetti, G., Gheller, C.: The turbulent pressure support in galaxy clusters revisited. MNRAS 481(1), L120–L124 (2018). https://doi.org/10.1093/mnrasl/sly172. arXiv:1809.02690

    Article  ADS  Google Scholar 

  42. Shi, X., Komatsu, E., Nelson, K., Nagai, D.: Analytical model for non-thermal pressure in galaxy clusters - II. Comparison with cosmological hydrodynamics simulation. MNRAS 448, 1020–1029 (2015). https://doi.org/10.1093/mnras/stv036. arXiv:1408.3832

    Article  ADS  Google Scholar 

  43. Mernier, F., Biffi, V., Yamaguchi, H., Medvedev, P., Simionescu, A., Ettori, S., Werner, N., Kaastra, J.S., de Plaa, J., Gu, L.: Enrichment of the Hot Intracluster Medium: Observations. Space Science Reviews 214(8), 129 (2018). https://doi.org/10.1007/s11214-018-0565-7. arXiv:1811.01967

    Article  ADS  Google Scholar 

  44. Werner, N., Urban, O., Simionescu, A., Allen, S.W.: A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies. Nature 502, 656–658 (2013). https://doi.org/10.1038/nature12646. arXiv:1310.7948

    Article  ADS  Google Scholar 

  45. Urban, O., Werner, N., Allen, S.W., Simionescu, A., Mantz, A.: A uniform metallicity in the outskirts of massive, nearby galaxy clusters. MNRAS 470, 4583–4599 (2017). https://doi.org/10.1093/mnras/stx1542. arXiv:1706.01567

    Article  ADS  Google Scholar 

  46. Biffi, V., Planelles, S., Borgani, S., Rasia, E., Murante, G., Fabjan, D., Gaspari, M.: The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations. MNRAS 476, 2689–2703 (2018). https://doi.org/10.1093/mnras/sty363. arXiv:1801.05425

    Article  ADS  Google Scholar 

  47. Simionescu, A., Werner, N., Urban, O., Allen, S.W., Ichinohe, Y., Zhuravleva, I.: A Uniform Contribution of Core-collapse and Type Ia Supernovae to the Chemical Enrichment Pattern in the Outskirts of the Virgo Cluster. ApJ 811, L25 (2015). https://doi.org/10.1088/2041-8205/811/2/L25. arXiv:1506.06164

    Article  ADS  Google Scholar 

  48. Hitomi Collaboration: Solar abundance ratios of the iron-peak elements in the Perseus cluster. Nature 551, 478–480 (2017). https://doi.org/10.1038/nature24301. arXiv:1711.10035

    Article  ADS  Google Scholar 

  49. Rudd, D H, Nagai, D: Non-equilibrium Electrons and the Sunyaev-Zel’dovich Effect of Galaxy Clusters. accepted to the ApJL arXiv:0907.1287(2009)

  50. Avestruz, C., Nagai, D., Lau, E.T., Nelson, K.: Non-equilibrium Electrons in the Outskirts of Galaxy Clusters. ApJ 808, 176 (2015). https://doi.org/10.1088/0004-637X/808/2/176. arXiv:1410.8142

    Article  ADS  Google Scholar 

  51. Hitomi Collaboration, Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L.: Temperature structure in the Perseus cluster core observed with Hitomi. PASJ 70(2), 11 (2018). https://doi.org/10.1093/pasj/psy004. arXiv:1712.06612

    Article  ADS  Google Scholar 

  52. Bykov, A.M., Vazza, F., Kropotina, J.A., Levenfish, K.P., Paerels, F.B.S.: Shocks and Non-thermal Particles in Clusters of Galaxies. Space Science Reviews 215(1), 14 (2019). https://doi.org/10.1007/s11214-019-0585-y. arXiv:1902.00240

    Article  ADS  Google Scholar 

  53. Brunetti, G., Jones, T.W.: Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. International Journal of Modern Physics D 23, 1430007–98 (2014). https://doi.org/10.1142/S0218271814300079. arXiv:1401.7519

    Article  ADS  Google Scholar 

  54. Bykov, A.M., Dolag, K., Durret, F.: Cosmological Shock Waves. Space Science Reviews 134, 119–140 (2008). https://doi.org/10.1007/s11214-008-9312-9. arXiv:0801.0995

    Article  ADS  Google Scholar 

  55. Brunetti, G., Lazarian, A.: Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays. MNRAS 410, 127–142 (2011). https://doi.org/10.1111/j.1365-2966.2010.17457.x. arXiv:1008.0184

    Article  ADS  Google Scholar 

  56. Fukugita, M., Hogan, C.J., Peebles, P.J.E.: The Cosmic Baryon Budget. ApJ 503, 518–530 (1998). https://doi.org/10.1086/306025. astro-ph/9712020

    Article  ADS  Google Scholar 

  57. Kereš, D., Katz, N., Weinberg, D.H., Davé, R.: How do galaxies get their gas?. MNRAS 363, 2–28 (2005). https://doi.org/10.1111/j.1365-2966.2005.09451.x. astro-ph/0407095

    Article  ADS  Google Scholar 

  58. Fukugita, M., Peebles, P.J.E.: Massive Coronae of Galaxies. ApJ 639, 590–599 (2006). https://doi.org/10.1086/499556. astro-ph/0508040

    Article  ADS  Google Scholar 

  59. Tumlinson, J., Thom, C., Werk, J.K., Prochaska, J.X., Tripp, T.M., Weinberg, D.H., Peeples, M.S., O’Meara, J.M., Oppenheimer, B.D., Meiring, J.D., Katz, N.S., Davé, R., Ford, A.B., Sembach, K.R.: The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals. Science 334(6058), 948 (2011). https://doi.org/10.1126/science.1209840. arXiv:1111.3980

    Article  ADS  Google Scholar 

  60. Werk, J.K., Prochaska, J.X., Cantalupo, S., Fox, A.J., Oppenheimer, B., Tumlinson, J., Tripp, T.M., Lehner, N., McQuinn, M.: The COS-Halos Survey: Origins of the Highly Ionized Circumgalactic Medium of Star-Forming Galaxies. ApJ 833, 54 (2016)

    Article  ADS  Google Scholar 

  61. Oppenheimer, B.D., Crain, R.A., Schaye, J., Rahmati, A., Richings, A.J., Trayford, J..W, Tumlinson, J., Bower, R.G., Schaller, M., Theuns, T.: Bimodality of low-redshift circumgalactic O VI in non-equilibrium EAGLE zoom simulations. MNRAS 460 (2), 2157–2179 (2016). https://doi.org/10.1093/mnras/stw1066. arXiv:1603.05984

    Article  ADS  Google Scholar 

  62. Stern, J., Hennawi, J.F., Prochaska, J.X., Werk, J.K.: A Universal Density Structure for Circumgalactic Gas. ApJ 830(2), 87 (2016). https://doi.org/10.3847/0004-637X/830/2/87. arXiv:1604.02168

    Article  ADS  Google Scholar 

  63. Oppenheimer, B.D., Segers, M., Schaye, J., Richings, A.J., Crain, R.A.: Flickering AGN can explain the strong circumgalactic O VI observed by COS-Halos. MNRAS 474(4), 4740–4755 (2018). https://doi.org/10.1093/mnras/stx2967. arXiv:1705.07897

    Article  ADS  Google Scholar 

  64. Armillotta, L., Fraternali, F., Werk, J.K., Prochaska, J.X., Marinacci, F.: The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. MNRAS 470(1), 114–125 (2017). https://doi.org/10.1093/mnras/stx1239. arXiv:1608.05416

    Article  ADS  Google Scholar 

  65. McQuinn, M., Werk, J.K.: Implications of the large OVI columns around low-redshift L galaxies. ApJ 852(33), 16 (2018)

    Google Scholar 

  66. Bland-Hawthorn, J., Gerhard, O.: The Galaxy in Context: Structural, Kinematic, and Integrated Properties. ARA&A 54, 529–596 (2016). https://doi.org/10.1146/annurev-astro-081915-023441. arXiv:1602.07702

    Article  ADS  Google Scholar 

  67. Ponti, G., Hofmann, F., Churazov, E., Morris, M.R., Haberl, F., Nandra, K., Terrier, R., Clavel, M., Goldwurm, A.: An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567 (7748), 347–350 (2019). https://doi.org/10.1038/s41586-019-1009-6. arXiv:1904.05969

    Article  ADS  Google Scholar 

  68. Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Nelson, D., Hernquist, L.: Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. MNRAS 444(2), 1518–1547 (2014). https://doi.org/10.1093/mnras/stu1536. arXiv:1405.2921

    Article  ADS  Google Scholar 

  69. Schaye, J., Crain, R.A., Bower, R.G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia, C., Frenk, C.S., McCarthy, I.G., Helly, J.C., Jenkins, A., Rosas-Guevara, Y.M., White, S.D.M., Baes, M., Booth, C.M., Camps, P., Navarro, J.F., Qu, Y., Rahmati, A., Sawala, T., Thomas, P.A., Trayford, J.: The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). https://doi.org/10.1093/mnras/stu2058. arXiv:1407.7040

    Article  ADS  Google Scholar 

  70. Pillepich, A., Springel, V., Nelson, D., Genel, S., Naiman, J., Pakmor, R., Hernquist, L., Torrey, P., Vogelsberger, M., Weinberger, R., Marinacci, F.: Simulating galaxy formation with the IllustrisTNG model. MNRAS 473(3), 4077–4106 (2018). https://doi.org/10.1093/mnras/stx2656. arXiv:1703.02970

    Article  ADS  Google Scholar 

  71. Nelson, D., Kauffmann, G., Pillepich, A., Genel, S., Springel, V., Pakmor, R., Hernquist, L., Weinberger, R., Torrey, P., Vogelsberger, M., Marinacci, F.: The abundance, distribution, and physical nature of highly ionized oxygen O VI, O VII, and O VIII in IllustrisTNG. MNRAS 477, 450–479 (2018)

    Article  ADS  Google Scholar 

  72. Anderson, M.E., Churazov, E., Bregman, J.N.: A deep XMM-Newton study of the hot gaseous halo around NGC 1961. MNRAS 455, 227–243 (2016). https://doi.org/10.1093/mnras/stv2314. arXiv:1508.01514

    Article  ADS  Google Scholar 

  73. Bogdán, A., Bourdin, H., Forman, W.R., Kraft, R.P., Vogelsberger, M., Hernquist, L., Springel, V.: Probing the Hot X-Ray Corona around the Massive Spiral Galaxy, NGC 6753, Using Deep XMM-Newton Observations. ApJ 850, 98 (2017). https://doi.org/10.3847/1538-4357/aa9523. arXiv:1710.07286

    Article  ADS  Google Scholar 

  74. Li, J.-T., Bregman, J.N., Wang, Q.D., Crain, R.A., Anderson, M.E.: Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies. ApJ 855, L24 (2018). https://doi.org/10.3847/2041-8213/aab2af. arXiv:1802.09453

    Article  ADS  Google Scholar 

  75. Pellegrini, S., Ciotti, L., Negri, A., Ostriker, J.P.: Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies. ApJ 856(2), 115 (2018). https://doi.org/10.3847/1538-4357/aaae07. arXiv:1802.02005

    Article  ADS  Google Scholar 

  76. Bregman, J.N., Anderson, M.E., Miller, M.J., Hodges-Kluck, E., Dai, X., Li, J.-T., Li, Y., Qu, Z.: The Extended Distribution of Baryons around Galaxies. ApJ 862, 3 (2018). https://doi.org/10.3847/1538-4357/aacafe. arXiv:1803.08963

    Article  ADS  Google Scholar 

  77. Kaastra, J., Finoguenov, A., Nicastro, F., Branchini, E., Schaye, J., Cappelluti, N., Nevalainen, J., Barcons, X., Bregman, J., Croston, J., Dolag, K., Ettori, S., Galeazzi, M., Ohashi, T., Piro, L., Pointecouteau, E., Pratt, G., Reiprich, T., Roncarelli, M., Sanders, J., Takei, Y., Ursino, E.: The Hot and Energetic Universe: The missing baryons and the warm-hot intergalactic medium. arXiv e-prints arXiv:1306.2324 (2013)

  78. Mernier, F., de Plaa, J., Werner, N., Kaastra, J.S., Raassen, A.J.J., Gu, L., Mao, J., Urdampilleta, I., Truong, N., Simionescu, A.: Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies. MNRAS 478(1), L116–L121 (2018). https://doi.org/10.1093/mnrasl/sly080. arXiv:1803.06296

    Article  ADS  Google Scholar 

  79. Fraternali, F., Tomassetti, M.: Estimating gas accretion in disc galaxies using the Kennicutt-Schmidt law. MNRAS 426(3), 2166–2177 (2012). https://doi.org/10.1111/j.1365-2966.2012.21650.x. arXiv:1207.0093

    Article  ADS  Google Scholar 

  80. van der Wel, A., Franx, M., van Dokkum, P.G., Skelton, R.E., Momcheva, I.G., et al.: 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3. ApJ 788(1), 28 (2014). https://doi.org/10.1088/0004-637X/788/1/28. arXiv:1404.2844

    Article  ADS  Google Scholar 

  81. Pezzulli, G., Fraternali, F., Binney, J.: The angular momentum of cosmological coronae and the inside-out growth of spiral galaxies. MNRAS 467(1), 311–329 (2017). https://doi.org/10.1093/mnras/stx029. arXiv:1701.01442

    Article  ADS  Google Scholar 

  82. Oppenheimer, B.D.: Deviations from hydrostatic equilibrium in the circumgalactic medium: spinning hot haloes and accelerating flows. MNRAS 480(3), 2963–2975 (2018). https://doi.org/10.1093/mnras/sty1918. arXiv:1801.00788

    Article  ADS  Google Scholar 

  83. Hodges-Kluck, E.J., Miller, M.J., Bregman, J.N.: The Rotation of the Hot Gas around the Milky Way. ApJ 822(1), 21 (2016). https://doi.org/10.3847/0004-637X/822/1/21. arXiv:1603.07734

    Article  ADS  Google Scholar 

  84. Gaspari, M., Ruszkowski, M., Oh, S.P.: Chaotic cold accretion on to black holes. MNRAS 432, 3401–3422 (2013). https://doi.org/10.1093/mnras/stt692. arXiv:1301.3130

    Article  ADS  Google Scholar 

  85. Voit, G.M., Donahue, M., O’Shea, B.W., Bryan, G.L., Sun, M., Werner, N.: Supernova Sweeping and Black Hole Feedback in Elliptical Galaxies. ApJ 803, L21 (2015). https://doi.org/10.1088/2041-8205/803/2/L21. arXiv:1503.02104

    Article  ADS  Google Scholar 

  86. McNamara, B.R., Russell, H.R., Nulsen, P.E.J., Hogan, M.T., Fabian, A.C., Pulido, F., Edge, A.C.: A Mechanism for Stimulating AGN Feedback by Lifting Gas in Massive Galaxies. ApJ 830, 79 (2016). https://doi.org/10.3847/0004-637X/830/2/79. arXiv:1604.04629

    Article  ADS  Google Scholar 

  87. Eke, V.R., Baugh, C.M., Cole, S., Frenk, C.S., Navarro, J.F.: Galaxy groups in the 2dF Galaxy Redshift Survey: the number density of groups. MNRAS 370(3), 1147–1158 (2006). https://doi.org/10.1111/j.1365-2966.2006.10568.x. arXiv:astro-ph/0510643

    Article  ADS  Google Scholar 

  88. Tempel, E., Kipper, R., Saar, E., Bussov, M., Hektor, A., Pelt, J.: Galaxy filaments as pearl necklaces. A&A 572, A8 (2014). https://doi.org/10.1051/0004-6361/201424418. arXiv:1406.4357

    Article  ADS  Google Scholar 

  89. Le Brun, A.M.C., McCarthy, I.G., Schaye, J., Ponman, T.J.: Towards a realistic population of simulated galaxy groups and clusters. MNRAS 441(2), 1270–1290 (2014). https://doi.org/10.1093/mnras/stu608. arXiv:1312.5462

    Article  ADS  Google Scholar 

  90. Planelles, S., Borgani, S., Fabjan, D., Killedar, M., Murante, G., Granato, G.L., Ragone-Figueroa, C., Dolag, K.: On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium. MNRAS 438(1), 195–216 (2014). https://doi.org/10.1093/mnras/stt2141. arXiv:1311.0818

    Article  ADS  Google Scholar 

  91. Truong, N., Rasia, E., Mazzotta, P., Planelles, S., Biffi, V., Fabjan, D., Beck, A.M., Borgani, S., Dolag, K., Gaspari, M.: Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution. MNRAS 474(3), 4089–4111 (2018). https://doi.org/10.1093/mnras/stx2927. arXiv:1607.00019

    Article  ADS  Google Scholar 

  92. Pratt, G.W., Croston, J.H., Arnaud, M., Böhringer, H.: Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS). A&A 498(2), 361–378 (2009). https://doi.org/10.1051/0004-6361/200810994. arXiv:0809.3784

    Article  ADS  Google Scholar 

  93. Maughan, B.J., Giles, P.A., Randall, S.W., Jones, C., Forman, W.R.: Self-similar scaling and evolution in the galaxy cluster X-ray luminosity-temperature relation. MNRAS 421(2), 1583–1602 (2012). https://doi.org/10.1111/j.1365-2966.2012.20419.x. arXiv:1108.1200

    Article  ADS  Google Scholar 

  94. Osmond, J.P.F., Ponman, T.J.: The GEMS project: X-ray analysis and statistical properties of the group sample. MNRAS 350(4), 1511–1535 (2004). https://doi.org/10.1111/j.1365-2966.2004.07742.x. arXiv:astro-ph/0402439

    Article  ADS  Google Scholar 

  95. Sun, M.: Hot gas in galaxy groups: recent observations. New J. Phys. 14(4), 045004 (2012). https://doi.org/10.1088/1367-2630/14/4/045004. arXiv:1203.4228

    Article  ADS  Google Scholar 

  96. Hearin, A.P., Zentner, A.R., Ma, Z.: General requirements on matter power spectrum predictions for cosmology with weak lensing tomography. JCAP 2012(4), 034 (2012). https://doi.org/10.1088/1475-7516/2012/04/034. arXiv:1111.0052

    Article  Google Scholar 

  97. van Daalen, M.P., Schaye, J.: The contributions of matter inside and outside of haloes to the matter power spectrum. MNRAS 452(3), 2247–2257 (2015). https://doi.org/10.1093/mnras/stv1456. arXiv:1501.05950

    Article  ADS  Google Scholar 

  98. van Daalen, M.P., McCarthy, I.G., Schaye, J.: Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. MNRAS 491(2), 2424–2446 (2020). https://doi.org/10.1093/mnras/stz3199. arXiv:1906.00968

    Article  ADS  Google Scholar 

  99. Merloni, A., Predehl, P., Becker, W., Böhringer, H., Boller, T., Brunner, H., the German eROSITA Consortium: eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv e-prints arXiv:1209.3114 (2012)

  100. Borm, K., Reiprich, T.H., Mohammed, I., Lovisari, L.: Constraining galaxy cluster temperatures and redshifts with eROSITA survey data. A&A 567, A65 (2014). https://doi.org/10.1051/0004-6361/201322643. arXiv:1404.5312

    Article  ADS  Google Scholar 

  101. Pillepich, A., Reiprich, T.H., Porciani, C., Borm, K., Merloni, A.: Forecasts on dark energy from the X-ray cluster survey with eROSITA: constraints from counts and clustering. MNRAS 481(1), 613–626 (2018). https://doi.org/10.1093/mnras/sty2240. arXiv:1807.06021

    Article  ADS  Google Scholar 

  102. Nandra, K., Barret, D., Barcons, X., Fabian, A., den Herder, J.-W., Piro, L., Watson, M., Adami, C., Aird, J., Afonso, J.M., et al.: The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv e-prints arXiv:1306.2307 (2013)

  103. Ettori, S., Pratt, G.W., de Plaa, J., Eckert, D., Nevalainen, J., et al.: The Hot and Energetic Universe: The astrophysics of galaxy groups and clusters. arXiv:1306.2322 (2013)

  104. Pointecouteau, E., Reiprich, T.H., Adami, C., Arnaud, M., Biffi, V., et al.: The Hot and Energetic Universe: The evolution of galaxy groups and clusters. arXiv:1306.2319 (2013)

  105. Shull, J.M., Danforth, C.W., Tilton, E.M.: Tracing the Cosmic Metal Evolution in the Low-redshift Intergalactic Medium. ApJ 796(1), 49 (2014). https://doi.org/10.1088/0004-637X/796/1/49. arXiv:1409.6720

    Article  ADS  Google Scholar 

  106. Cen, R., Ostriker, J.P.: Where Are the Baryons? II. Feedback Effects. ApJ 650(2), 560–572 (2006). https://doi.org/10.1086/506505. arXiv:astro-ph/0601008

    Article  ADS  Google Scholar 

  107. Sunyaev, R.A., Zeldovich, Y.B.: Formation of Clusters of Galaxies; Protocluster Fragmentation and Intergalactic Gas Heating. A&A 20, 189 (1972)

    ADS  Google Scholar 

  108. Bryan, G.L., Norman, M.L., O’Shea, B.W., Abel, T., Wise, J.H., Turk, M.J., Reynolds, D.R., Collins, D.C., Wang, P., Skillman, S.W., Smith, B., Harkness, R.P., Bordner, J., Kim, J.-h., Kuhlen, M., Xu, H., Goldbaum, N., Hummels, C., Kritsuk, A.G., Tasker, E., Skory, S., Simpson, C.M., Hahn, O., Oishi, J.S., So, G.C., Zhao, F., Cen, R., Li, Y., Enzo Collaboration: ENZO: An Adaptive Mesh Refinement Code for Astrophysics. ApJS 211, 19 (2014). https://doi.org/10.1088/0067-0049/211/2/19. arXiv:1307.2265

    Article  ADS  Google Scholar 

  109. Vazza, F., Brüggen, M., Gheller, C., Hackstein, S., Wittor, D., Hinz, P.M.: Simulations of extragalactic magnetic fields and of their observables. Classical and Quantum Gravity 34(23), 234001 (2017). https://doi.org/10.1088/1361-6382/aa8e60. arXiv:1711.02669

    Article  ADS  Google Scholar 

  110. Nicastro, F., Kaastra, J., Krongold, Y., Borgani, S., Branchini, E., Cen, R., Dadina, M., Danforth, C.W., Elvis, M., Fiore, F., Gupta, A., Mathur, S., Mayya, D., Paerels, F., Piro, L., Rosa-Gonzalez, D., Schaye, J., Shull, J.M., Torres-Zafra, J., Wijers, N., Zappacosta, L.: Observations of the missing baryons in the warm-hot intergalactic medium. Nature 558(7710), 406–409 (2018). https://doi.org/10.1038/s41586-018-0204-1. arXiv:1806.08395

    Article  ADS  Google Scholar 

  111. Vazza, F., Ettori, S., Roncarelli, M., Angelinelli, M., Brüggen, M., Gheller, C.: Detecting shocked intergalactic gas with X-ray and radio observations. A&A 627, A5 (2019). https://doi.org/10.1051/0004-6361/201935439. arXiv:1903.04166

    Article  ADS  Google Scholar 

  112. Borgani, S., Murante, G., Springel, V., Diaferio, A., Dolag, K., Moscardini, L., Tormen, G., Tornatore, L., Tozzi, P.: X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation. MNRAS 348, 1078–1096 (2004). https://doi.org/10.1111/j.1365-2966.2004.07431.x. arXiv:astro-ph/0310794

    Article  ADS  Google Scholar 

  113. Roncarelli, M., Moscardini, L., Tozzi, P., Borgani, S., Cheng, L.M., Diaferio, A., Dolag, K., Murante, G.: Properties of the diffuse X-ray background in a high-resolution hydrodynamical simulation. MNRAS 368, 74–84 (2006). https://doi.org/10.1111/j.1365-2966.2006.10102.x. astro-ph/0507643

    Article  ADS  Google Scholar 

  114. Hickox, R.C., Markevitch, M.: Can Chandra Resolve the Remaining Cosmic X-Ray Background?. ApJ 671, 1523–1530 (2007). https://doi.org/10.1086/522918. arXiv:0706.3089

    Article  ADS  Google Scholar 

  115. Ursino, E., Galeazzi, M., Roncarelli, M.: Effect of Metallicity on X-ray Emission from the Warm-hot Intergalactic Medium. ApJ 721, 46–58 (2010). https://doi.org/10.1088/0004-637X/721/1/46. arXiv:1007.3274

    Article  ADS  Google Scholar 

  116. Cen, R., Chisari, N.E.: Star Formation Feedback and Metal-enrichment History of the Intergalactic Medium. ApJ 731, 11 (2011). https://doi.org/10.1088/0004-637X/731/1/11. arXiv:1005.1451

    Article  ADS  Google Scholar 

  117. Roncarelli, M., Cappelluti, N., Borgani, S., Branchini, E., Moscardini, L.: The effect of feedback on the emission properties of the warm-hot intergalactic medium. MNRAS 424, 1012–1025 (2012). https://doi.org/10.1111/j.1365-2966.2012.21277.x. arXiv:1202.4275

    Article  ADS  Google Scholar 

  118. Ursino, E., Galeazzi, M., Huffenberger, K.: X-Ray and Sunyaev-Zel’dovich Properties of the Warm-hot Intergalactic Medium. ApJ 789(1), 55 (2014). https://doi.org/10.1088/0004-637X/789/1/55. arXiv:1405.5225

    Article  ADS  Google Scholar 

  119. Naidoo, K., Whiteway, L., Massara, E., Gualdi, D., Lahav, O., Viel, M., Gil-Marín, H., Font-Ribera, A.: Beyond two-point statistics: using the minimum spanning tree as a tool for cosmology. MNRAS 491(2), 1709–1726 (2020). https://doi.org/10.1093/mnras/stz3075. arXiv:1907.00989

    Article  ADS  Google Scholar 

  120. Nevalainen, J., Tempel, E., Liivamägi, L.J., Branchini, E., Roncarelli, M., Giocoli, C., Heinämäki, P., Saar, E., Tamm, A., Finoguenov, A., Nurmi, P., Bonamente, M.: Missing baryons traced by the galaxy luminosity density in large-scale WHIM filaments. A&A 583, A142 (2015). https://doi.org/10.1051/0004-6361/201526443. arXiv:1508.02310

    Article  ADS  Google Scholar 

  121. Tanimura, H., Aghanim, N., Douspis, M., Beelen, A., Bonjean, V.: Detection of intercluster gas in superclusters using the thermal Sunyaev-Zel’dovich effect. A&A 625, A67 (2019). https://doi.org/10.1051/0004-6361/201833413. arXiv:1805.04555

    Article  ADS  Google Scholar 

  122. Govoni, F., Orrù, E., Bonafede, A., Iacobelli, M., Paladino, R., Vazza, F., Murgia, M., Vacca, V., Giovannini, G., Feretti, L.: A radio ridge connecting two galaxy clusters in a filament of the cosmic web. Science 364(6444), 981–984 (2019). https://doi.org/10.1126/science.aat7500. arXiv:1906.07584

    Article  ADS  Google Scholar 

  123. Pisani, A., Massara, E., Spergel, D.N., Alonso, D., Baker, T., Cai, Y.-C., Cautun, M., Davies, C., Demchenko, V., Doré, O.: Cosmic voids: a novel probe to shed light on our Universe. In: BAAS, vol. 51, p. 40 (2019)

  124. Nicastro, F., Kaastra, J., Argiroffi, C., Behar, E., Bianchi, S., Bocchino, F., Borgani, S., Brand uardi-Raymont, G., Bregman, J., Churazov, E., Diaz-Trigo, M., Done, C., Drake, J., Fang, T., Grosso, N., Luminari, A., Mehdipour, M., Paerels, F., Piconcelli, E., Pinto, C., Porquet, D., Reeves, J., Schaye, J., Sciortino, S., Smith, R., Spiga, D., Tomaru, R., Tombesi, F., Wijers, N., Zappacosta, L.: The Voyage of Metals in the Universe from Cosmological to Planetary Scales: the need for a Very High-Resolution, High Throughput Soft X-ray Spectrometer. arXiv e-prints arXiv:1909.02454 (2019)

  125. Harrison, F.A., Craig, W.W., Christensen, F.E., Hailey, C.J., Zhang, W.W., et al.: The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission. ApJ 770, 103 (2013). https://doi.org/10.1088/0004-637X/770/2/103. arXiv:1301.7307

    Article  ADS  Google Scholar 

  126. Pareschi, G., Cotroneo, V., Spiga, D., Vernani, D., Barbera, M., Artale, A., Collura, A., Varisco, S., Grisoni, G., Valsecchi, G., Negri, B.: Astronomical Soft X-ray mirrors Reflectivity Enhancement by Multilayer Coatings with Carbon overcoating. In: Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5488, pp. 481–491 (2004)

  127. Cotroneo, V., Spiga, D., Barbera, M., Bruni, R., Chen, K., Marcelli, C., Pareschi, G., Romaine, S., Zhao, Y.D., Zheng, L., Wu, Z.Y.: Carbon overcoatings for soft x-ray reflectivity enhancement. In: Optics for EUV, X-Ray, and Gamma-Ray Astronomy III, Proceedings of SPIE, vol. 6688, p. 66880U (2007)

  128. Conconi, P., Campana, S.: Optimization of grazing incidence mirrors and its application to surveying X-ray telescopes. A&A 372, 1088–1094 (2001). https://doi.org/10.1051/0004-6361:20010584. arXiv:astro-ph/0104369

    Article  ADS  Google Scholar 

  129. Spiga, D.: Optics for X-ray telescopes: analytical treatment of the off-axis effective area of mirrors in optical modules. A&A 529, A18 (2011). https://doi.org/10.1051/0004-6361/201116430. arXiv:1101.0629

    Article  ADS  Google Scholar 

  130. Kempf, S., Fleischmann, A., Gastaldo, L., Enss, C.: Physics and Applications of Metallic Magnetic Calorimeters. J. Low Temp. Phys. 193(3-4), 365–379 (2018). https://doi.org/10.1007/s10909-018-1891-6

  131. Sauvageot, J.L., Pigot, C., de la Broïse, X., Charvolin, T., Sahin, H., Rodriguez, M., Lugiez, F., Le Coguie, A., Dong, Q., Jin, Y.: Toward large μ-calorimeters x-ray matrices based on metal-insulator sensors and HEMTs/SiGe cryo-electronics. In: Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905, p. 99050S (2016)

  132. Sauvageot, J.L., de la Broïse, X., Charvolin, T., Thibon, R., Lugiez, F., Le Coguie, A., Zahir, A.: Large x-rays high impedance μ-calorimeters matrices: status and prospects. In: Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 106992I (2018)

  133. Irwin, K.D., Hilton, G.C.: Transition-Edge Sensors, vol. 99, p 63. Springer-Verlag, Berlin/Heidelberg (2005)

    Google Scholar 

  134. Ullom, J.N., Bennett, D.A.: Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Superconductor Science Technology 28(8), 084003 (2015). https://doi.org/10.1088/0953-2048/28/8/084003

    Article  ADS  Google Scholar 

  135. Lee, S.J., Adams, J.S., Bandler, S.R., Chervenak, J.A., Eckart, M.E., Finkbeiner, F.M., Kelley, R.L., Kilbourne, C.A., Porter, F.S., Sadleir, J.E., Smith, S.J., Wassell, E.J.: Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV. Appl. Phys. Lett. 107(22), 223503 (2015). https://doi.org/10.1063/1.4936793

    Article  ADS  Google Scholar 

  136. Smith, S.J., Adams, J.S., Bandler, S.R., Chervenak, J.A., Datesman, A.M., Eckart, M.E., Finkbeiner, F.M., Hummatov, R., Kelley, R.L., Kilbourne, C.A., Miniussi, A.R., Porter, F.S., Sadleir, J.E., Sakai, K., Wakeham, N.A., Wassell, E.J.: Multiabsorber transition-edge sensors for x-ray astronomy. Journal of Astronomical Telescopes, Instruments, and Systems 5, 021008 (2019). https://doi.org/10.1117/1.JATIS.5.2.021008

    Article  ADS  Google Scholar 

  137. Irwin, K.D., Lehnert, K.W.: Microwave SQUID multiplexer. Appl. Phys. Lett. 85(11), 2107 (2004). https://doi.org/10.1063/1.1791733

    Article  ADS  Google Scholar 

  138. Mates, J.A.B., Hilton, G.C., Irwin, K.D., Vale, L.R., Lehnert, K.W.: Demonstration of a multiplexer of dissipationless superconducting quantum interference devices. Appl. Phys. Lett. 92(2), 023514 (2008). https://doi.org/10.1063/1.2803852

    Article  ADS  Google Scholar 

  139. Moseley, S.H., Mather, J.C., McCammon, D.: Thermal detectors as x-ray spectrometers. J. Appl. Phys. 56(5), 1257–1262 (1984). https://doi.org/10.1063/1.334129

    Article  ADS  Google Scholar 

  140. Barbera, M., Lo Cicero, U., Sciortino, L., D’Anca, F., Lo Cicero, G., et al.: ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A. In: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 106991R (2018)

  141. Yamada, S., Ohashi, T., Ishisaki, Y., Ezoe, Y., Ichinohe, Y., et al.: Super DIOS: Future X-ray Spectroscopic Mission to Search for Dark Baryons. J. Low Temp. Phys. https://doi.org/10.1007/s10909-018-1918-z (2018)

  142. Mushotzky, R.: AXIS: a probe class next generation high angular resolution x-ray imaging satellite. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 1069929 (2018)

  143. Gaskin, J.A., Allured, R., Bandler, S.R., Basso, S., Bautz, M.W., et al.: Lynx Mission concept status. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10397, p. 103970S (2017)

  144. Abazajian, K., Addison, G., Adshead, P., Ahmed, Z., Allen, S.W., Alonso, D., Alvarez, M., Anderson, A., Arnold, K.S., Baccigalupi, C., et al.: CMB-S4 Science Case, Reference Design, and Project Plan. arXiv e-prints arXiv:1907.04473 (2019)

  145. The Simons Observatory Collaboration, Abitbol, M.H., Adachi, S., Ade, P., Aguirre, J., Ahmed, Z., Aiola, S., Ali, A., Alonso, D., Alvarez, M.A., et al.: The Simons Observatory: Astro2020 Decadal Project Whitepaper. arXiv e-prints:1907.08284 (2019)

  146. Hazumi, M., Ade, P.A.R., Akiba, Y., Alonso, D., Arnold, K., et al.: LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection. J. Low Temp. Phys. 194(5-6), 443–452 (2019). https://doi.org/10.1007/s10909-019-02150-5

    Article  ADS  Google Scholar 

  147. Klaassen, P., Mroczkowski, T., Bryan, S., Groppi, C., Basu, K., et al.: The Atacama Large Aperture Submillimeter Telescope (AtLAST). arXiv e-prints:1907.04756 (2019)

  148. Sehgal, N., Aiola, S., Akrami, Y., Basu, K., Boylan-Kolchin, M., et al.: CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky. arXiv e-prints:1906.10134 (2019)

  149. Basu, K., Remazeilles, M., Melin, J.-B., Alonso, D., Bartlett, J.G., et al.: A Space Mission to Map the Entire Observable Universe using the CMB as a Backlight. arXiv e-prints arXiv:1909.01592 (2019)

  150. Bulbul, E., Gaspari, M., Alvarez, G., Avestruz, C., Bautz, M., et al.: Probing Macro-Scale Gas Motions and Turbulence in Diffuse Cosmic Plasmas. BAAS 51(3), 210 (2019). arXiv:1903.04597

    Google Scholar 

  151. Mroczkowski, T., Nagai, D., Basu, K., Chluba, J., Sayers, J., Adam, R., Churazov, E., Crites, A., Di Mascolo, L., Eckert, D.: Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich Effects. A Millimetre/Submillimetre Probe of the Warm and Hot Universe. Space Science Reviews 215(1), 17 (2019). https://doi.org/10.1007/s11214-019-0581-2. arXiv:1811.02310

    Article  ADS  Google Scholar 

  152. The LUVOIR Team: The LUVOIR Mission Concept Study Interim Report. arXiv e-prints arXiv:1809.09668 (2018)

  153. Horii, T., Asaba, S., Hasegawa, K., Tashiro, H.: Can HI 21-cm lines trace the missing baryons in the filamentary structures?. PASJ 69(4), 73 (2017). https://doi.org/10.1093/pasj/psx056. arXiv:1702.00193

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Nicastro, J.S. Kaastra, G. M. Voit, M. Donahue, J. Green, W. Cui, N. Hatch, D. Fielding, J. Sayers, J. P. Breuer, L. di Mascolo, F. Mernier and J. Croston, in no particular order, for fruitful discussions and support towards preparing this manuscript. A.S. gratefully acknowledges support by the Women In Science Excel (WISE) programme of the Netherlands Organisation for Scientific Research (NWO). S.E., M.R. and F.G. acknowledge financial contribution from the contracts ASI-INAF Athena 2015-046-R.0, ASI-INAF Athena 2019-27-HH.0, “Attività di Studio per la comunità scientifica di Astrofisica delle Alte Energie e Fisica Astroparticellare” (Accordo Attuativo ASI-INAF n. 2017-14-H.0), and from INAF “Call per interventi aggiuntivi a sostegno della ricerca di main stream di INAF”. D.N. acknowledges Yale University for granting a triennial leave and the Max-Planck-Institut für Astrophysik for hospitality. GWP acknowledges support from the French space agency, CNES. B.M. acknowledges support from the UK STFC under grants ST/R00109X/1, ST/R000794/1, and ST/T000295/1. F.V. acknowledges financial support from the ERC Starting Grant “MAGCOW”, no. 714196, the usage of Piz Daint supercomputer at CSCS-ETHZ (Lugano, Switzerland) under project s805, and the usage of online storage tools kindly provided by the INAF Astronomical Archive (IA2) initiative (http://www.ia2.inaf.it). VB acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) project nr. 415510302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Simionescu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simionescu, A., Ettori, S., Werner, N. et al. Voyage through the hidden physics of the cosmic web. Exp Astron 51, 1043–1079 (2021). https://doi.org/10.1007/s10686-021-09720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09720-0

Keywords

Navigation