Abstract
In this paper we consider the use of wide field of view radar sensors such as the Murchison Widefield Array (MWA), a low frequency radio telescope designed for astrophysics and cosmology, for rapid response observations of the debris clouds produced by collisions between objects in Earth orbit. With an increasing density of objects in Low Earth Orbit, including legacy assets used by the astronomy community over decades, the risk of new debris clouds forming is also increasing. The MWA constitutes a wide field, rapid response passive radar system and we explore its likely performance in the detection and characterisation of debris clouds. In general, astronomy facilities such as the MWA can play a role in protecting the space environment for the future. In order to undertake this work, we adapt the NASA EVOLVE 4.0 breakup model, utilising the EVOLVE outputs to produce representative dynamic debris clouds. We find that the MWA is likely to detect a large fraction (> 70%) of modelled debris cloud fragments for collision masses between 100 kg and 1000 kg for orbits in the lower part of LEO, if the MWA can achieve close to optimal detection sensitivity. Useful detection fractions are still achieved for more conservative assumptions. The detection fraction of fragments decreases as a function of altitude and inversely with collision mass. Encouragingly, we find that the wide field nature of the MWA allows the full evolving debris clouds to be observed in a single observation, with only ∼2% of the debris fragments escaping the sensitive portion of the field of view after 100 seconds, for all collision masses and altitudes. These results show that the MWA is an intrinsically useful facility for the rapid characterisation of debris clouds, but that work is required to achieve the data processing within an appropriate timeframe to provide rapid alerts.
Similar content being viewed by others
Notes
We also enquired directly with the authors regarding the bridging function, but did not receive a response to our enquiry.
References
SciPy: Open source scientific tools for python. http://www.scipy.org/ (2001)
Satellite Collision Leaves Significant Debris Cloud: Orbital Debris Quarterly News (ODQN). 13(2)1 (2009)
Akhmetov, V., Savanevych, V., Dikov, E.: Analysis of the indian asat test on 27 march 2019 (2019)
Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A.M., Kerzendorf, W.E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M.M., Nair, P.H., Unther, H.M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J.E.H., Singer, L., Fox, R., Weaver, B.A., Zabalza, V., Edwards, Z.I., Azalee Bostroem, K., Burke, D.J., Casey, A.R., Crawford, S.M., Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P.L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., Streicher, O.: Astropy: A community Python package for astronomy. Astron. Astrophys. 558, A33 (2013). https://doi.org/10.1051/0004-6361/201322068
Gallozzi, S., Scardia, M., Maris, M.: Concerns about ground based astronomical observations: a step to safeguard the astronomical sky. arXiv:2001.10952 (2020)
Hennessy, B., Rutten, M., Tingay, S., Young, R.: Orbit Determination Before Detect:, Orbital Parameter Matched Filtering for Uncued Detection. arXiv:2003.03947 (2020)
Hennessy, B., Tingay, S., Hancock, P., Young, R., Tremblay, S., Wayth, R.B., Morgan, J., McSweeney, S., Crosse, B., Johnston-Hollitt, M., Kaplan, D.L., Pallot, D., Walker, M.: Improved techniques for the surveillance of the near earth space environment with the Murchison Widefield Array. In: 2019 IEEE radar conference (Radarconf), pp. 1–6. https://doi.org/10.1109/RADAR.2019.8835821 (2019)
Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)
Johnson, N., Stansbery, E., Liou, J.C., Horstman, M., Stokely, C., Whitlock, D.: The characteristics and consequences of the break-up of the fengyun-1c spacecraft. Acta Astronaut. 63, 128–135 (2008). https://doi.org/10.1016/j.actaastro.2007.12.044
Johnson, N.L., Krisko, P.H., Liou, J.C., Anz-Meador, P.D.: NASA’S new breakup model of evolve 4.0. Adv. Space Res. 28(9), 1377–1384 (2001). https://doi.org/10.1016/S0273-1177(01)00423-9
Kelso, T.: Analysis of the 2007 chinese ASAT test and the impact of its debris on the space environment. In: Advanced Maui Optical and space surveillance technologies conference, p. E35 (2007)
Kessler, D.J., Cour-Palais, B.G.: Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978). https://doi.org/10.1029/JA083iA06p02637
Li, G., Jiang, H., Cheng, H., Liu, J., Yang, C., Jiang, P.: Space debris observation performance research of CSTAR at Kunlun Station in Antarctica. Adv. Space Res. 64(8), 1527–1536 (2019). https://doi.org/10.1016/j.asr.2019.07.023
Losacco, M., Di Lizia, P., Massari, M., Naldi, G., Pupillo, G., Bianchi, G., Siminski, J.: Initial orbit determination with the multibeam radar sensor BIRALES. Acta Astronaut. 167, 374–390 (2020). https://doi.org/10.1016/j.actaastro.2019.10.043
Matney, M.: Small debris observations from the iridium 33/Cosmos 2251 collision. Orbital Debris Quarterly News (ODQN) 14(2), 6 (2010)
Neugebauer, G., Habing, H.J., van Duinen, R., Aumann, H.H., Baud, B., Beichman, C.A., Beintema, D.A., Boggess, N., Clegg, P.E., de Jong, T., Emerson, J.P., Gautier, T.N., Gillett, F.C., Harris, S., Hauser, M.G., Houck, J.R., Jennings, R.E., Low, F.J., Marsden, P.L., Miley, G., Olnon, F.M., Pottasch, S.R., Raimond, E., Rowan-Robinson, M., Soifer, B.T., Walker, R.G., Wesselius, P.R., Young, E.: The infrared astronomical satellite (IRAS) mission. Astrophys. J. Lett. 278, L1–L6 (1984). https://doi.org/10.1086/184209
O’Conner, B.: NASA Handbook for limiting orbital debris. NASA Technical Standards System 8719.14, 42 (2018)
Palmer, J.E., Hennessy, B., Rutten, M., Merrett, D., Tingay, S., Kaplan, D., Tremblay, S., Ord, S.M., Morgan, J., Wayth, R.B.: Surveillance of Space Using Passive Radar and the Murchison Widefield Array. In: 2017 IEEE radar conference (Radarconf), pp. 1715–1720. https://doi.org/10.1109/RADAR.2017.7944483(2017)
Prabu, S., Hancock, P.J., Zhang, X., Tingay, S.J.: The development of non-coherent passive radar techniques for space situational awareness with the Murchison Widefield Array. arXiv:2002.01674 (2020)
Ryan, W., Ryan, E.: Detection, Tracking, and Characterization of Small, Faint Targets at GEO Distances using the Magdalena Ridge Observatory 2.4-meter Telescope. In: Proceedings of the <A href=“https://www.amostech.com”> Advanced maui optical and space surveillance technologies conference A, p. 41 (2019)
Tingay, S.J., Goeke, R., Bowman, J.D., Emrich, D., Ord, S.M., Mitchell, D.A., Morales, M.F., Booler, T., Crosse, B., Wayth, R.B., Lonsdale, C.J., Tremblay, S., Pallot, D., Colegate, T., Wicenec, A., Kudryavtseva, N., Arcus, W., Barnes, D., Bernardi, G., Briggs, F., Burns, S., Bunton, J.D., Cappallo, R.J., Corey, B.E., Deshpande, A., Desouza, L., Gaensler, B.M., Greenhill, L.J., Hall, P.J., Hazelton, B.J., Herne, D., Hewitt, J.N., Johnston-Hollitt, M., Kaplan, D.L., Kasper, J.C., Kincaid, B.B., Koenig, R., Kratzenberg, E., Lynch, M.J., Mckinley, B., Mcwhirter, S.R., Morgan, E., Oberoi, D., Pathikulangara, J., Prabu, T., Remillard, R.A., Rogers, A.E.E., Roshi, A., Salah, J.E., Sault, R.J., Udaya-Shankar, N., Schlagenhaufer, F., Srivani, K.S., Stevens, J., Subrahmanyan, R., Waterson, M., Webster, R.L., Whitney, A.R., Williams, A., Williams, C.L., Wyithe, J.S.B.: The Murchison Widefield Array: The square kilometre array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, e007 (2013). https://doi.org/10.1017/pasa.2012.007
Tingay, S.J., Kaplan, D.L., McKinley, B., Briggs, F., Wayth, R.B., Hurley-Walker, N., Kennewell, J., Smith, C., Zhang, K., Arcus, W., Bhat, N.D.R., Emrich, D., Herne, D., Kudryavtseva, N., Lynch, M., Ord, S.M., Waterson, M., Barnes, D.G., Bell, M., Gaensler, B.M., Lenc, E., Bernardi, G., Greenhill, L.J., Kasper, J.C., Bowman, J.D., Jacobs, D., Bunton, J.D., deSouza, L., Koenig, R., Pathikulangara, J., Stevens, J., Cappallo, R.J., Corey, B.E., Kincaid, B.B., Kratzenberg, E., Lonsdale, C.J., McWhirter, S.R., Rogers, A.E.E., Salah, J.E., Whitney, A.R., Deshpande, A., Prabu, T., Udaya Shankar, N., Srivani, K.S., Subrahmanyan, R., Ewall-Wice, A., Feng, L., Goeke, R., Morgan, E., Remillard, R.A., Williams, C.L., Hazelton, B.J., Morales, M.F., Johnston-Hollitt, M., Mitchell, D.A., Procopio, P., Riding, J., Webster, R.L., Wyithe, J.S.B., Oberoi, D., Roshi, A., Sault, R.J., Williams, A.: On the detection and tracking of space debris using the Murchison Widefield Array. I. simulations and test observations demonstrate feasibility. Astron. J. 146, 103 (2013). https://doi.org/10.1088/0004-6256/146/4/103
Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)
Acknowledgments
This research has made use of NASA’s Astrophysics Data System. We have made use of NumPy [23], matplotlib (a Python library for publication quality graphics [8]), SciPy [1], and Astropy [4] (a community-developed core Python package for Astronomy). We thank the anonymous referee for comments that improved the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Joubert, W., Tingay, S. Simulations of orbital debris clouds due to breakup events and their characterisation using the Murchison Widefield Array radio telescope. Exp Astron 51, 61–75 (2021). https://doi.org/10.1007/s10686-020-09684-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10686-020-09684-7