Skip to main content

Atmospheric Characterization via Broadband Color Filters on the PLAnetary Transits and Oscillations of stars (PLATO) Mission

Abstract

We assess broadband color filters for the two fast cameras on the PLAnetary Transits and Oscillations of stars (PLATO) space mission with respect to exoplanetary atmospheric characterization. We focus on Ultra Hot Jupiters and Hot Jupiters placed 25pc and 100pc away from the Earth and warm Super-Earths placed 10pc and 25pc away. Our analysis takes as input literature values for the difference in transit depth between the broadband lower (500-675 nm) wavelength interval (hereafter referred to as” blue“) and the upper (675-1125nm) broadband wavelength interval (hereafter referred to as” red“) for transmission, occultation and phase curve analyses. Planets orbiting main sequence central stars with stellar classes F, G, K and M are investigated. We calculate the signal-to-noise ratio with respect to photon and instrument noise for detecting the difference in transit depth between the two spectral intervals. Results suggest that bulk atmospheric composition and planetary geometric albedos could be detected for (Ultra) Hot Jupiters up to ~ 100pc (~25pc) with strong (moderate) Rayleigh extinction. Phase curve information could be extracted for Ultra Hot Jupiters orbiting K and G dwarf stars up to 25pc away. For warm Super-Earths, basic atmospheric types (primary and water-dominated) and the presence of sub-micron hazes in the upper atmosphere could be distinguished for up to a handful of cases up to ~ 10pc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Rauer, H., et al.: Exp. Astron. 38, 249–330 (2014)

    ADS  Google Scholar 

  2. Batygin, K., Stevenson, D.J.: ApJ. 829, 2 (2016)

    Google Scholar 

  3. Mordasini, C., et al.: A&A. 547, A111 (2012)

    ADS  Google Scholar 

  4. Mordasini, C., et al.: Int. J. Astrobiol. 14, 201–232 (2015)

    ADS  Google Scholar 

  5. Mordasini, C., et al.: ApJ. 832, 41 (2016)

    ADS  Google Scholar 

  6. Boley, A.C., et al.: ApJL. 817, L17 (2016)

    ADS  Google Scholar 

  7. Fortney, J., Nettelmann, N.: Nat., Spa. Sci. Rev. 152, 423–447 (2010)

    ADS  Google Scholar 

  8. Maldonado, J., et al.: A&A. 612, A93 (2018)

    ADS  Google Scholar 

  9. Madhusudhan, N.: Ann. Rev. 57, 617–663 (2019)

    Google Scholar 

  10. Tinetti, G., et al.: Astron. Astrophys. Rev. 21, 63 (2013)

    ADS  Google Scholar 

  11. Kreidberg, L., et al.: ApJ. 793, 2 (2014a)

    Google Scholar 

  12. Sedaghati, E., et al.: Nature. 549, 238–241 (2017)

    ADS  Google Scholar 

  13. Gibson, N.P., et al.: MNRAS. 467, 4591–4605 (2017)

    ADS  Google Scholar 

  14. Sedaghati, E., et al.: A&A. 596, A47 (2016)

    ADS  Google Scholar 

  15. Sing, D.K., et al.: MNRAS. 446, 2428–2443 (2015)

    ADS  Google Scholar 

  16. Spake, J., et al.: Nature. 557, 68–70 (2018)

    ADS  Google Scholar 

  17. Bean, J.L., et al.: ApJ. 771, 108 (2013)

    ADS  Google Scholar 

  18. Lee, J.-M., et al.: MNRAS. 420, 172–182 (2012)

    ADS  Google Scholar 

  19. Sing, D.K., et al.: Nature. 529, 59–62 (2016)

    ADS  Google Scholar 

  20. Tsiaras, A., et al.: ApJ. 155, 156 (2018)

    Google Scholar 

  21. Huitson, C.M., et al.: AJ. 154, 95 (2017)

    ADS  Google Scholar 

  22. Barstow, J.K., et al.: MNRAS. 448, 2,546–2,561 (2015)

    Google Scholar 

  23. Pinhas, A., et al.: MNRAS. 480, 5314–5331 (2018)

    ADS  Google Scholar 

  24. Batygin, K., Stevenson, D.J.: ApJ. 714, L238–L243 (2010)

    ADS  Google Scholar 

  25. Laughlin, G.: Mass-radius relations of Giant planets: the radius anomaly and interior models. In: Deeg, H., Belmonte, J. (eds.) Handbook of Exoplanets. Springer, Cham (2018)

    Google Scholar 

  26. Bento, J., et al.: MNRAS. 477, 3406–3423 (2018)

    ADS  Google Scholar 

  27. Thorngren, D.P., Fortney, J.J.: AJ. 155, 214 (2018)

    ADS  Google Scholar 

  28. Amundsen, D.S., et al.: A&A. 564, A59 (2014)

    ADS  Google Scholar 

  29. Amundsen, D.S., et al.: A&A. 595, A36 (2016)

    ADS  Google Scholar 

  30. Heng, K., Showman, A.: Ann. Rev. Earth Plan. Sci. 43, 509–540 (2015)

    ADS  Google Scholar 

  31. Komacek, T.D., Showman, A.P.: ApJ. 821, 16 (2016)

    ADS  Google Scholar 

  32. Drummond, B., et al.: ApJ. 855, 2 (2018)

    Google Scholar 

  33. Barstow, J. K., et al.: ApJ 834, 1 (2016a)

  34. Parmentier, V., et al.: ApJ. 828, 1 (2016)

    Google Scholar 

  35. Pinhas, A., Madhusudhan, N.: MNRAS. 471, 4355–4373 (2017)

    ADS  Google Scholar 

  36. Lines, S., et al.: MNRAS. 481, 194–205 (2018)

    ADS  Google Scholar 

  37. Močnik, T., et al.: AJ. 156, 44 (2018)

    ADS  Google Scholar 

  38. Cowan, N.B., Charbonneau, D.: MNRAS. 379, 641–646 (2007)

    ADS  Google Scholar 

  39. Zellem, R.T., et al.: ApJ. 790, 1 (2014)

    ADS  Google Scholar 

  40. Showman, A., Guillot, T.: A&A. 385, 166–180 (2002)

    ADS  Google Scholar 

  41. Kataria, T., et al.: ApJ. 821, 1 (2016)

    ADS  Google Scholar 

  42. Griffith, C.: Phil. Trans. A372, 20130086 (2014)

    ADS  Google Scholar 

  43. Lecavelier des Etangs, A.F., et al.: A&A. 481, L83–L86 (2008)

    ADS  Google Scholar 

  44. Sing, D.K., et al.: ApJ. 686, 667–673 (2008)

    ADS  Google Scholar 

  45. Oshagh, M., et al.: A&A. 568, A99 (2014)

    ADS  Google Scholar 

  46. Sudarsky, D., et al.: ApJ. 538, 885–903 (2000)

    ADS  Google Scholar 

  47. Rowe, J.F., et al.: ApJ. 689, 1345 (2008)

    ADS  Google Scholar 

  48. Bell, T.J., et al.: ApJL. 847, L2 (2017)

    ADS  Google Scholar 

  49. Berdyugina, S.V., et al.: ApJ. 728, 1 (2011)

    Google Scholar 

  50. Evans, T. M., et al.: ApJ 772, (2013)

  51. Demory, B.-O., et al.: ApJL. 735, L12 (2011)

    ADS  Google Scholar 

  52. Cowan, N. B., Agol, E., ApJ 776, 82 (2011a)

  53. Santerne, A., et al.: A&A. 536, A70 (2011)

    ADS  Google Scholar 

  54. Cowan, N. B., Agol, E.: ApJ, 729, 54 (2011b)

  55. Nikolov, N., et al.: MNRAS. 474, 1705–1717 (2018a)

    ADS  Google Scholar 

  56. Garcίa Muñoz, A., Isaak, K.G.: PNAS. 112, 13,461–13,466 (2015)

    Google Scholar 

  57. Heng, K., Demory, B.O.: ApJ. 777, 2 (2013)

    Google Scholar 

  58. von Paris, P., et al.: A&A. 587, A149 (2016)

    ADS  Google Scholar 

  59. Schwartz, J.C., Cowan, N.B.: MNRAS. 449, 4192–4203 (2015)

    ADS  Google Scholar 

  60. García Muñoz, A., Cabrera, J.: MNRAS. 473, 1,801–1,818 (2018)

    ADS  Google Scholar 

  61. García Muñoz, A.: ApJ. 854, id.108 (2018)

  62. Désert, J.-M., et al.: ApJ Supp. 197, 1 (2011)

    ADS  Google Scholar 

  63. Charbonneau, D., et al.: ApJ. 529, L45 (2000)

    ADS  Google Scholar 

  64. Charbonneau, D., et al.: ApJ. 568, 1 (2002)

    Google Scholar 

  65. Casasayas-Barris et al. A&A 635 (2020)

  66. Vidal-Madjar, A., et al.: Nature. 422, 143–146 (2003)

    ADS  Google Scholar 

  67. Vidal-Madjar, A., et al.: ApJL. 604, 1 (2004)

    Google Scholar 

  68. Line, M.R., et al.: AJ. 152, 6 (2016)

    ADS  Google Scholar 

  69. Swain, M.R., et al.: ApJ. 704, 2 (2009)

    Google Scholar 

  70. Snellen, I.A.G., et al.: Nature. 465, 1049–1051 (2010)

    ADS  Google Scholar 

  71. Kislyakova, K., et al.: Science. 346, 981–984 (2014)

    ADS  Google Scholar 

  72. Diamond-Lowe, H., et al.: ApJ. 796, 1 (2014)

    Google Scholar 

  73. Knutson, H.A., et al.: ApJ. 673, 1 (2008)

    Google Scholar 

  74. Helling, C., et al.: MNRAS. 460, 855–883 (2016)

    ADS  Google Scholar 

  75. McDonald, R.J., Madhusudhan, N.: MNRAS. 469, 1979–1996 (2017)

    ADS  Google Scholar 

  76. Showman, A., et al.: ApJ. 699, 1 (2009)

    Google Scholar 

  77. Hebb, L., et al.: ApJ. 708, 1 (2009a)

    Google Scholar 

  78. Hebb, L., et al.: ApJ. 693, 2 (2009b)

    Google Scholar 

  79. Sing, D.K., López-Morales, M.: A&A. 493, L31–L34 (2009)

    ADS  Google Scholar 

  80. Gillon, M., et al.: A&A. 542, A4 (2012)

    ADS  Google Scholar 

  81. Bell, T.J., Cowan, N.B.: ApJL. 857, L20 (2018)

    ADS  Google Scholar 

  82. Kitzmann, D., ApJL. 817, 2 (2016)

    Google Scholar 

  83. Stevenson, et al.: ApJ. 147, 6 (2014)

    Google Scholar 

  84. Kreidberg, L., et al.: ApJ. 814, 1 (2015)

    Google Scholar 

  85. Smith, A.M.S., et al.: MNRAS. 416, 2096–2101 (2011)

    ADS  Google Scholar 

  86. Cartier, K.M.S., et al.: AJ. 143, 1 (2016)

    Google Scholar 

  87. Delrez, L., et al.: MNRAS. 474, 2334–2351 (2018)

    ADS  Google Scholar 

  88. Kreidberg, L., et al.: AJ. 156, 1 (2018)

    ADS  Google Scholar 

  89. Hoeijmakers, H., et al.: Nature. 560, 453–455 (2018)

    ADS  Google Scholar 

  90. Evans, T.M., et al.: Nature. 548, 58–60 (2018)

    ADS  Google Scholar 

  91. Arcangeli, J., et al.: ApJL. 855, L30 (2018)

    ADS  Google Scholar 

  92. Gillon, M., et al.: A&A. 562, L3 (2014)

    ADS  Google Scholar 

  93. Awiphan, S., et al.: MNRAS. 463, 2574–2582 (2016)

    ADS  Google Scholar 

  94. Kosiarek, M.R., et al.: ApJ. 157, 3 (2019)

    Google Scholar 

  95. Bakos, G.Ά., et al.: ApJ. 710, 1724–1745 (2010)

    ADS  Google Scholar 

  96. Huber, K. F., et al.: A&A. 597, A113 (2017a)

  97. Huber, K. F., et al.: A&A. 606, A134 (2017b)

  98. Mansfield, M., et al.: ApJL. 868 (2018)

  99. Fortney, J.J., et al.: ApJ. 775, 80 (2013)

    ADS  Google Scholar 

  100. Borucki, B., et al.: Science. 327, 977–980 (2010)

    ADS  Google Scholar 

  101. Howard, A., et al.: Science. 330, 653–655 (2010)

    ADS  Google Scholar 

  102. Venturini, J., et al.: A&A. 596, A90 (2016)

    ADS  Google Scholar 

  103. Lopez, E.D., Fortney, J.J.: AJ. 792, 1 (2014)

    ADS  Google Scholar 

  104. Chachan, Y., Stevenson, D.J.: ApJ. 854, 21 (2018)

    ADS  Google Scholar 

  105. Dorn, C., et al.: A&A. 597, A37 (2017)

    ADS  Google Scholar 

  106. Dorn, C., Heng, K.: ApJ. 853, 1 (2018)

    Google Scholar 

  107. Charbonneau, D., et al.: Nature. 462, 891–894 (2009)

    ADS  Google Scholar 

  108. De Mooij, E.J.W., et al.: ApJ. 771, 2 (2013)

    Google Scholar 

  109. Fraine, J.D., et al.: ApJ. 765, 127 (2013)

    ADS  Google Scholar 

  110. Kempton, E.M.R., et al.: ApJ. 745, 3 (2012)

    ADS  Google Scholar 

  111. Kreidberg, L., et al.: Nature. 505, 69–72 (2014b)

    ADS  Google Scholar 

  112. Valencia, D., et al.: ApJ. 775, 10 (2013)

    ADS  Google Scholar 

  113. Hu, R., Seager, S.: ApJ. 784, 63 (2014)

    ADS  Google Scholar 

  114. Menou, K.: ApJ. 744, L16 (2012)

    ADS  Google Scholar 

  115. Charnay, B., et al.: ApJ. 813, L1 (2015a)

  116. Charnay, B., et al.: ApJ. 813, 15 (2015b)

  117. Kataria, T., et al.: ApJ. 785, 92 (2014)

    ADS  Google Scholar 

  118. Gao, P., Bennecke, B.: ApJ. 863, 165 (2018)

    ADS  Google Scholar 

  119. Lavvas, P., et al.: ApJ. 878, 2 (2019)

    Google Scholar 

  120. Rafikov, R.R.: ApJ. 648, 666–682 (2006)

    ADS  Google Scholar 

  121. Luger, R., et al.: Astrobiol. 15, 1 (2015)

    ADS  Google Scholar 

  122. Jin, S., and Mordasini, C.: ApJ. 853, 2 (2018)

  123. Horst, S.M., et al.: Nature Astron. 2, 303–306 (2018)

    ADS  Google Scholar 

  124. Grenfell, J.L., et al.: ApJ. 861, 1 (2018)

    Google Scholar 

  125. Southworth, J., et al.: ApJ. 153, 4 (2017)

    Google Scholar 

  126. Fischer, D., et al.: ApJ. 675, 790 (2008)

    ADS  Google Scholar 

  127. Endl, M., et al.: ApJ. 759, 19 (2012)

    ADS  Google Scholar 

  128. Crida, F., et al.: Res. Notes. Amer. Ast. Soc. 2, 172 (2018)

    ADS  Google Scholar 

  129. Hatzes, A., et al.: A&A. 743, 75 (2011)

    Google Scholar 

  130. Barros, S.C.C., et al.: A&A. 569, A74 (2014)

    ADS  Google Scholar 

  131. Batalha, N.M., et al.: ApJ. 729, 27 (2011)

    ADS  Google Scholar 

  132. Lam, K.W.F., et al.: A&A. 620, A77 (2018)

    ADS  Google Scholar 

  133. Gillon, M., et al.: Nature. 542, 456–460 (2017)

    ADS  Google Scholar 

  134. De Wit, J., et al.: Nature. 537, 69–72 (2016)

    ADS  Google Scholar 

  135. De Wit, J., et al.: Nature Astron. 2, 214–219 (2018)

    ADS  Google Scholar 

  136. Gandolfi, D., et al.: A&A. 619, L10 (2018)

  137. Huang, C.X., et al.: ApJL. 868, L39 (2018)

    ADS  Google Scholar 

  138. Kreidberg, L., Handbook of Exoplanets, (2018)

  139. Sing, D.K., et al.: MNRAS. 436, 2956–2973 (2013)

    ADS  Google Scholar 

  140. Huitson, C.M., et al.: MNRAS. 434, 3252–3274 (2013)

    ADS  Google Scholar 

  141. Sedaghati, E., et al.: A&A. 576, L11 (2015)

    ADS  Google Scholar 

  142. Espinoza, N., et al.: MNRAS. 482, 2065–2087 (2019)

    ADS  Google Scholar 

  143. Murgas, F.: A&A. 563, A41 (2014)

    ADS  Google Scholar 

  144. Lendl, M., et al.: A&A. 606, A18 (2017)

    ADS  Google Scholar 

  145. Varley, R., Astrophys. Source Code Lib., record ascl:1512.011 (2015)

  146. Csizmadia, S., et al.: A&A. 549, A9 (2013)

    ADS  Google Scholar 

  147. Miller-Ricci, E., et al.: ApJ. 690, 2 (2008)

    Google Scholar 

  148. Benneke, B., Seager, S.: ApJ. 753, 100 (2012)

    ADS  Google Scholar 

  149. Heng, K.: ApJL. 826, L16 (2016)

    ADS  Google Scholar 

  150. Pont, F., et al.: MNRAS. 432, 2917–2944 (2013)

    ADS  Google Scholar 

  151. Vardya, M.S.: ApJ. 135, 303–304 (1962)

    ADS  Google Scholar 

  152. Sing, D.K., et al.: MNRAS. 416, 1443–1455 (2011)

    ADS  Google Scholar 

  153. McCullough, et al.: ApJ. 791, 55 (2014)

    ADS  Google Scholar 

  154. Angerhausen, D., et al.: SPIE. 1, 3 (2015)

    Google Scholar 

  155. Gibson, N.P., et al.: MNRAS. 428, 3680–3692 (2013a)

    ADS  Google Scholar 

  156. Gibson, N.P., et al.: MNRAS. 436, 2974–2988 (2013b)

    ADS  Google Scholar 

  157. Mallon, M., Strassmeier, K.G.: A&A. 590, A100 (2016)

    ADS  Google Scholar 

  158. Deming, D., et al.: ApJ. 774, 2 (2013)

    ADS  Google Scholar 

  159. Nikolov, N., et al.: MNRAS. 437, 46–66 (2014)

    ADS  Google Scholar 

  160. Nikolov, N., et al.: MNRAS. 447, 463–478 (2015)

    ADS  Google Scholar 

  161. Jordan, A., et al.: ApJ. 778, 2 (2013)

    ADS  Google Scholar 

  162. Nikolov, N., et al.: ApJ. 832, 2 (2016)

    Google Scholar 

  163. Wakeford, H.R., et al.: AJ. 155, 29 (2018)

    ADS  Google Scholar 

  164. Bento, J., et al.: MNRAS. 437, 1511–1518 (2014)

    ADS  Google Scholar 

  165. Mallon, M., et al.: A&A. 583, A138 (2015)

    ADS  Google Scholar 

  166. Parviainen, H., et al.: A&A. 585, A114 (2016)

    ADS  Google Scholar 

  167. Mackebrandt, F., et al.: A&A. 608, A26 (2017)

    ADS  Google Scholar 

  168. Kirk, J., et al.: MNRAS. 468, 3907–3916 (2017)

    ADS  Google Scholar 

  169. Nikolov, N., et al.: MNRAS. 474, 1705–1717 (2018b)

    ADS  Google Scholar 

  170. Louden, T., et al.: MNRAS. 470, 742–754 (2017)

    ADS  Google Scholar 

  171. Ragazzoni, R., et al.: SPIE. 9904 (2016)

  172. Prod’homme, T., et al.: SPIE. 9915, 9915OU-1 (2016)

  173. Marcos-Arenal, P., et al.: A&A. 566, A92 (2014)

    ADS  Google Scholar 

  174. Verhoeve, P., et al.: SPIE. 9915 (2016)

  175. Laubier, D., et al., SPIE. 1056405–2 (2017)

  176. Casagrande, L., VandenBerg, D.A.: MNRAS. 444, 392–419 (2014)

    ADS  Google Scholar 

  177. Berta, Z., et al.: ApJ. 747, 35 (2012)

    ADS  Google Scholar 

  178. Tsiaras, A., et al.: ApJ. 832, 202 (2016)

    ADS  Google Scholar 

  179. Samadi, R., et al.: A&A. 624, A117 (2019)

    ADS  Google Scholar 

  180. Bevington, P. R., et al.: Data Reduction and Analysis for the Physical Sciences (3rd ed.) McGraw-Hill, ISBN 0–07–119926-8 (2002)

  181. Berriman, G., et al.: ApJL. 392, L31 (1992)

    ADS  Google Scholar 

  182. Claret, A.: A&A. 618, A20 (2018)

    ADS  Google Scholar 

  183. Hestroffer, D., Magnan, C.: A&A. 333, 338–342 (1998)

    ADS  Google Scholar 

  184. Mallon, M., et al.: A&A. 614, A35 (2018)

    ADS  Google Scholar 

  185. Boyajian, T., et al.: MNRAS. 447, 846–857 (2014)

    ADS  Google Scholar 

  186. Mazeh, T., et al.: ApJ. 532, L55–L58 (2000)

    ADS  Google Scholar 

  187. Allen’s Astrophysical Quantities, NY, Springer, Allen, A., Cox, A. (Ed.), 4th edition (2000)

  188. Cenarro, A.J., et al.: MNRAS. 374, 664–690 (2007)

    ADS  Google Scholar 

  189. Johnson, J., et al.: AJ. 143, 111 (2012)

    ADS  Google Scholar 

  190. Goyal, J.M., et al.: MNRAS. 474, 5158–5185 (2018)

    ADS  Google Scholar 

  191. Fischer, P.D., et al.: ApJ. 827, 19 (2016)

    ADS  Google Scholar 

  192. Bétrémieux, J.: MNRAS. 456, 4051–4060 (2016)

    ADS  Google Scholar 

  193. Garcίa Muñoz, A., et al.: ApJ. 755, 2 (2012)

    ADS  Google Scholar 

  194. Barstow, J.K., et al.: ApJ. 786, 2 (2014)

    ADS  Google Scholar 

  195. Marchiori, V., et al.: A&A. 627, A71 (2019)

    ADS  Google Scholar 

  196. Barstow, J. K., et al.: SPIE. 9904 (2016b)

  197. Croll, B., et al.: ApJ. 717, 1084–1091 (2010)

    ADS  Google Scholar 

  198. Shporer, A., Hu, R.: ApJ. 150, 4 (2015)

    Google Scholar 

  199. Hooten, M.J., et al.: ApJL. 869, L25 (2018)

    ADS  Google Scholar 

  200. Yan, F., Henning, T.: Nature. 2, 714–718 (2018)

    Google Scholar 

  201. Haynes, K., et al.: ApJ. 806, 146 (2015)

    ADS  Google Scholar 

  202. Keating, D., and Cowan, N.B., arXiv:1809.00002 (2018)

  203. Garcίa Muñoz, A., et al.: Nature Astron. 1, 0114 (2017)

    Google Scholar 

  204. Stock, J.W., et al.: MNRAS. 479, 865–874 (2018)

    ADS  Google Scholar 

  205. Miller-Ricci, E., Fortney, J.J.: ApJ. 716, L74 (2010)

    ADS  Google Scholar 

  206. Grimm, S.L., Heng, K.: ApJ. 808, 2 (2015)

    Google Scholar 

  207. Howe, A. R., Burrows, A. S.: ApJ. 756, 176 1–14 (2012)

  208. Kitzmann, D., Heng, K.: MNRAS. 475, 94–107 (2018)

    ADS  Google Scholar 

  209. Harvey, A.H., et al.: J. Phys. Chem. Ref. Data. 27, 761 (1998)

    ADS  Google Scholar 

  210. Mischenko, M. I., et al.: Light scattering by non-spherical particles, Academic Press (2000)

  211. García Muñoz, A., Mills, F.P.: A&A. 547, A22 (2012)

  212. Khare, B.N., et al.: Icarus. 60, 127–137 (1984)

    ADS  Google Scholar 

  213. Nascimbeni, V., et al.: A&A. 579, 173 (2015)

    Google Scholar 

  214. Benneke, B., Seager, S.: ApJ. 778, 153 (2013)

    ADS  Google Scholar 

  215. Shabram, M., et al.: ApJ. 727, 65 (2011)

    ADS  Google Scholar 

  216. Cáceres, C., et al.: A&A. 565, A7 (2014)

    ADS  Google Scholar 

  217. Burrows, A., Sharp, C.: ApJ. 512, 843 (1999)

    ADS  Google Scholar 

  218. Sharp, C.M., Burrows, A.: ApJS. 168, 140 (2007)

    ADS  Google Scholar 

  219. Turner, J.D., et al.: MNRAS. 459, 789–819 (2016)

    ADS  Google Scholar 

  220. Chen, G., et al.: A&A. 600, A138 (2017)

    ADS  Google Scholar 

  221. Ehrenreich, D., et al.: A&A. 570, A89 (2014)

    ADS  Google Scholar 

  222. Tamburo, P., et al.: AJ. 155, 5 (2018)

    Google Scholar 

  223. Demory, B.-O., et al.: Nature. 542, 207–209 (2016)

    ADS  Google Scholar 

  224. Dragomir, D., et al.: Int. J. Astrobiol. 8, S293 (2012)

    Google Scholar 

  225. Demory, B.-O.: ApJL. 789, 1 (2014)

    Google Scholar 

  226. Samuel, B., et al.: A&A. 563, A103 (2014)

    ADS  Google Scholar 

  227. Verhoeve et al. (2016), High Energy, Optical, and Infrared Detectors for Astronomy VII, July 2016, https://doi.org/10.1117/12.2232336

  228. Smith, A.M.S., et al.: MNRAS. 474, 5523–5533 (2018)

    ADS  Google Scholar 

  229. Rappaport, S., et al.: ApJL. 773, 1 (2013)

    Google Scholar 

  230. Robin, A.C., et al.: A&A. 409, 523–540 (2003)

    ADS  Google Scholar 

  231. Gaudi, B.S., et al.: ApJ. 623, 472–481 (2005)

    ADS  Google Scholar 

  232. Narang, M., et al.: AJ. 156, 24 (2018)

    Google Scholar 

  233. Fressin, F., et al.: ApJ. 766, 2 (2013)

  234. Scheucher, M., et al: ApJ. 863, 1 (2018)

  235. Bétrémieux, J., Kaltenegger, L.: ApJL. 772, 2 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the European Space Agency and the PLATO Mission Consortium, whose outstanding efforts have made these results possible. The authors also extend warm thanks to members of the PLATO Science Working Team (SWT) for fruitful discussion. We also thank heartily the science and local organizing committees of the PLATO atmosphere workshops held in DLR-PF Berlin as well as their scientific participants whose discussions and input considerably helped to improve this manuscript. M. G. gratefully acknowledges support by the DFG through the project GO 2610/1-1. L.C. acknowledges funding by DLR grant 50OR1804. The authors gratefully acknowledge ISSI Team 464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lee Grenfell.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1

Table 13 Transit parameters for the PLATO FC blue and red spectral intervals

Appendix A2

Figure 19 (a-d) shows 4 cases, namely case (a) where TDblue-red is large, positive and statistically significant; cases b) and (c) where TDblue-red is small (either weakly negative as in case (b) or weakly positive as in case (c)) and non-significant, and case (d) where TDblue-red is large, negative and statistically significant.

Fig. 19
figure 19

TDblue-red ± 1σ (ppm) for four example observed cases from Table 3. Figure 19 photon flux at the stellar surfaceblue-red ± 1σ (ppm) for four example cases from Table 3. Thick blue (red) lines show the arithmetic mean TD (ppm) values in the blue (red) interval.

Appendix A3

Table 14 Variation of Geometric Albedo for HJ 189733b as a function of wavelength. Data taken from polarimetry observations by Berdyugina et al. [49]

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grenfell, J.L., Godolt, M., Cabrera, J. et al. Atmospheric Characterization via Broadband Color Filters on the PLAnetary Transits and Oscillations of stars (PLATO) Mission. Exp Astron 50, 1–49 (2020). https://doi.org/10.1007/s10686-020-09660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-020-09660-1

Keywords

  • PLATO
  • Color filters
  • Atmospheres
  • Composition
  • Haze
  • Albedo