GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era


The Gamma-Ray Integrated Detectors (GRID) is a space mission concept dedicated to monitoring the transient gamma-ray sky in the energy range from 10 keV to 2 MeV using scintillation detectors onboard CubeSats in low Earth orbits. The primary targets of GRID are the gamma-ray bursts (GRBs) in the local universe. The scientific goal of GRID is, in synergy with ground-based gravitational wave (GW) detectors such as LIGO and VIRGO, to accumulate a sample of GRBs associated with the merger of two compact stars and study jets and related physics of those objects. It also involves observing and studying other gamma-ray transients such as long GRBs, soft gamma-ray repeaters, terrestrial gamma-ray flashes, and solar flares. With multiple CubeSats in various orbits, GRID is unaffected by the Earth occultation and serves as a full-time and all-sky monitor. Assuming a horizon of 200 Mpc for ground-based GW detectors, we expect to see a few associated GW-GRB events per year. With about 10 CubeSats in operation, GRID is capable of localizing a faint GRB like 170817A with a 90% error radius of about 10 degrees, through triangulation and flux modulation. GRID is proposed and developed by students, with considerable contribution from undergraduate students, and will remain operated as a student project in the future. The current GRID collaboration involves more than 20 institutes and keeps growing. On August 29th, the first GRID detector onboard a CubeSat was launched into a Sun-synchronous orbit and is currently under test.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

  2. 2.


  1. 1.

    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo. Living Rev. Relat. 19(1), 1 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678), 85–88 (2017).

    ADS  MATH  Article  Google Scholar 

  3. 3.

    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848(2), L13 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017).

    ADS  MATH  Article  Google Scholar 

  6. 6.

    Ackermann, M., Ajello, M., Allafort, A., et al.: Fermi detection of γ-ray emission from the M2 soft X-ray flare on 2010 June 12. Astrophys. J. 745 (2), 144 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Ai, S., Gao, H., Dai, Z.G., et al.: The allowed parameter space of a long-lived neutron star as the merger remnant of GW170817. Astrophys. J. 860(1), 57 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Ajello, M., Allafort, A., Axelsson, M., et al.: Fermi-LAT observations of LIGO/virgo event GW170817. Astrophys. J. 861(2), 85 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Arcavi, I., Hosseinzadeh, G., Howell, D.A., et al.: Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551 (7678), 64–66 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Beniamini, P., Petropoulou, M., Barniol Duran, R., Giannios, D.: A lesson from GW170817: most neutron star mergers result in tightly collimated successful GRB jets. Mon. Not. R. Astron. Soc. 483(1), 840–851 (2019).

    ADS  Article  Google Scholar 

  11. 11.

    Bloser, P.F., Legere, J., Bancroft, C., et al.: Scintillator gamma-ray detectors with silicon photomultiplier readouts for high-energy astronomy. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8859, p. 88590A. (2013)

  12. 12.

    Briggs, M.S., Connaughton, V., Wilson-Hodge, C., et al.: Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys. Res. Lett. 38 (2), L02808 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Briggs, M.S., Fishman, G.J., Connaughton, V., et al.: First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor. J. Geophys. Res. (Space Physics) 115(A7), A07323 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Chattopadhyay, T., Falcon, A.D., Burrows, D.N., Fox, D.B., Palmer, D.: BlackCAT CubeSat: A soft x-ray sky monitor, transient finder, and burst detector for high-energy and multimessenger astophysics. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 106995S. (2018)

  15. 15.

    Cohen, M.B., Inan, U.S., Fishman, G.: Terrestrial gamma ray flashes observed aboard the compton gamma ray observatory/burst and transient source experiment and ELF/VLF radio atmospherics. J. Geophys. Res. (Atmospheres) 111(D24), D24109 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Collazzi, A.C., Kouveliotou, C., van der Horst, A.J., et al.: The five year fermi/gBM magnetar burst catalog. ApJS 218(1), 11 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Connaughton, V., Briggs, M.S., Goldstein, A., et al.: Localization of gamma-ray bursts using the fermi gamma-ray burst monitor. ApJS 216(2), 32 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Connaughton, V., Briggs, M.S., Xiong, S., et al.: Radio signals from electron beams in terrestrial gamma ray flashes. J. Geophys. Res. (Space Physics) 118(5), 2313–2320 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Cummer, S.A., Lu, G., Briggs, M.S., et al.: The lightning-TGF relationship on microsecond timescales. Geophys. Res. Lett. 38(14), L14810 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Drout, M.R., Piro, A.L., Shappee, B.J., et al.: Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science 358(6370), 1570–1574 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 392, L9 (1992).

    ADS  Article  Google Scholar 

  22. 22.

    Dwyer, J.R.: A fundamental limit on electric fields in air. Geophys. Res. Lett. 30(20), 2055 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    Eichler, D., Livio, M., Piran, T., Schramm, D.N.: Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340 (6229), 126–128 (1989).

    ADS  Article  Google Scholar 

  24. 24.

    Fishman, G.J., Bhat, P.N., Mallozzi, R., et al.: Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163), 1313–1316 (1994).

    ADS  Article  Google Scholar 

  25. 25.

    Fong, W., Berger, E., Margutti, R., Zauderer, B.A.: A decade of short-duration gamma-ray burst broadband afterglows: Energetics, circumburst densities, and jet opening angles. Astrophys. J. 815(2), 102 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Fuschino, F., Campana, R., Labanti, C., et al.: HERMES: An ultra-wide band X and gamma-ray transient monitor on board a nano-satellite constellation. arXiv:1812.02432 (2018)

  27. 27.

    Gehrels, N.: Instrumental background in gamma-ray spectrometers flown in low earth orbit. In: Nuclear Instruments and Methods in Physics Research, vol. 313, pp. 513–528 (1992)

  28. 28.

    Goldstein, A., Veres, P., Burns, E., et al.: Fermi Observations of the LIGO Event GW170104. Astrophys. J. 846 (1), L5 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Gottlieb, O., Nakar, E., Piran, T.: The cocoon emission - an electromagnetic counterpart to gravitational waves from neutron star mergers. Mon. Not. R. Astron. Soc. 473(1), 576–584 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Grodzicka-Kobylka, M., Szczesniak, T., Moszyński, M.: Comparison of SensL and Hamamatsu 4 × 4 channel SiPM arrays in gamma spectrometry with scintillators. Nucl. Inst. Methods Phys. Res. A 856, 53–64 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Hui, C.M., Briggs, M.S., Goldstein, A., et al.: MoonBEAM: A beyond-LEO gamma-ray burst detector for gravitational-wave astronomy. In: Deep Space Gateway Concept Science Workshop, vol. 2063, p. 3060 (2018)

  32. 32.

    Hurley, K., Svinkin, D.S., Aptekar, R.L., et al.: The interplanetary network response to LIGO GW150914. Astrophys. J. 829(1), L12 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Inan, U.S., Reising, S.C., Fishman, G.J., Horack, J.M.: On the association of terrestrial gamma-ray bursts with lightning and implications for sprites. Geophys. Res. Lett. 23(9), 1017–1020 (1996).

    ADS  Article  Google Scholar 

  34. 34.

    Iwanowska, J., Swiderski, L., Szczesniak, T., et al.: Performance of cerium-doped Gd3Al2Ga3 O 12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Inst. Methods Phys. Res. A 712, 34–40 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Jin, Z.P., Hotokezaka, K., Li, X., et al.: The Macronova in GRB 050709 and the GRB-macronova connection. Nat. Commun. 7, 12898 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Kasliwal, M.M., Nakar, E., Singer, L.P., et al.: Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 358 (6370), 1559–1565 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Li, L.X., Paczyński, B.: Transient events from neutron star mergers. Astrophys. J. 507(1), L59–L62 (1998).

    ADS  Article  Google Scholar 

  38. 38.

    Li, T.P.: Timing in the time domain: Cygnus X-1. Chinese J. Astron. Astrophys. 1, 313–332 (2001).

    ADS  Article  Google Scholar 

  39. 39.

    Metzger, B.D., Martínez-Pinedo, G., Darbha, S., et al.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc 406(4), 2650–2662 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    Murphy, D., Joe, F., Thompson, J.W., et al.: EIRSAT-1 – the educational Irish research satellite. In: Proceedings of the 2nd Symposium on Space Educational Activities, vol. 8859 (2018)

  41. 41.

    Nava, L., Ghirlanda, G., Ghisellini, G., Celotti, A.: Spectral properties of 438 GRBs detected by Fermi/GBM. Astron. Astrophys. 530, A21 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Ohno, M., Werner, N., Pál, A., et al.: CAMELOT: Design and performance verification of the detector concept and localization capability. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 1069964. (2018)

  43. 43.

    Olausen, S.A., Kaspi, V.M.: The McGill Magnetar Catalog. ApJS 212(1), 6 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Paczynski, B.: Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986).

    ADS  Article  Google Scholar 

  45. 45.

    Pian, E., D’Avanzo, P., Benetti, S., et al.: Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551(7678), 67–70 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Pozanenko, A.S., Barkov, M.V., Minaev, P.Y., et al.: GRB 170817A associated with GW170817: Multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. 852(2), L30 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Racusin, J., Perkins, J.S., Briggs, M.S., et al.: BurstCube: A cubesat for gravitational wave counterparts. arXiv: (2017)

  48. 48.

    Savchenko, V., Ferrigno, C., Kuulkers, E., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. 848(2), L15 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Smartt, S.J., Chen, T.W., Jerkstrand, A., et al.: A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678), 75–79 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Sun, H., Zhang, B., Li, Z.: Extragalactic high-energy transients: Event rate densities and luminosity functions. Astrophys. J. 812(1), 33 (2015).

    ADS  Article  Google Scholar 

  51. 51.

    Tanvir, N.R., Levan, A.J., Fruchter, A.S., et al.: A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500 (7464), 547–549 (2013).

    ADS  Article  Google Scholar 

  52. 52.

    Tavani, M., Marisaldi, M., Fuschino, F., et al.: Terrestrial gamma-ray flashes at the highest energies as detected by AGILE. In: AGU Fall meeting abstracts, vol. 2011, pp. AE24A–06 (2011)

  53. 53.

    Tur, C., Solovyev, V., Flamanc, J.: Temperature characterization of scintillation detectors using solid-state photomultipliers for radiation monitoring applications. Nucl. Inst. Methods Phys. Res. A 620(2-3), 351–358 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Ulyanov, A., Morris, O., Hanlon, L., et al.: Performance of a monolithic LaBr3:Ce crystal coupled to an array of silicon photomultipliers. Nucl. Inst. Methods Phys. Res. A 810, 107–119 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Wanderman, D., Piran, T.: The rate, luminosity function and time delay of non-Collapsar short GRBs. Mon. Not. R. Astron. Soc. 448(4), 3026–3037 (2015).

    ADS  Article  Google Scholar 

  56. 56.

    Werner, N., et al., Řípa, J., Pál, A.: CAMELOT: Cubesats applied for MEasuring and LOcalising transients mission overview. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 106992P. (2018)

  57. 57.

    Yoneyama, M., Kataoka, J., Arimoto, M., et al.: Evaluation of GAGG:Ce scintillators for future space applications. J. Instrument. 13(2), P02,023 (2018).

    Article  Google Scholar 

  58. 58.

    Yuan, W., Zhang, C., Ling, Z., et al.: Einstein Probe: A lobster-eye telescope for monitoring the x-ray sky. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 1069925. (2018)

  59. 59.

    Yue, C., Hu, Q., Zhang, F.W., et al.: How Special Is GRB 170817A? Astrophys. J. 853(1), L10 (2018).

    ADS  Article  Google Scholar 

  60. 60.

    Zhang, B., Zhang, B.B., Virgili, F.J., et al.: Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: The cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 703(2), 1696–1724 (2009).

    ADS  Article  Google Scholar 

  61. 61.

    Zhang, B.B., Zhang, B., Sun, H., et al.: A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 9, 447 (2018).

    ADS  Article  Google Scholar 

Download references


We thank the referee for useful comments. HF acknowledges funding support from the National Natural Science Foundation of China under the grant Nos. 11633003 & 11821303, and the National Key R&D Program of China (grant Nos. 2018YFA0404502 and 2016YFA040080X). BBZ acknowledges support from National Thousand Young Talents program of China and National Key Research and Development Program of China (2018YFA0404204) and The National Natural Science Foundation of China (grant No. 11833003). This work is supported by Tsinghua University Initiative Scientific Research Program.

Author information



Corresponding authors

Correspondence to Hua Feng or Ming Zeng or Bin-Bin Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Long, X., Zheng, X. et al. GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era. Exp Astron 48, 77–95 (2019).

Download citation


  • Gamma-ray bursts
  • Gravitational waves
  • Scintillation detector
  • SiPM
  • CubeSat