Skip to main content
Log in

Precipitable water vapor (PWV) estimations from the site of the Eastern Anatolia Observatory (DAG), a new astronomical observatory in Turkey

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We present preliminary statistics on the precipitable water vapor (PWV) content over the Karakaya Hills in Erzurum city, where the largest optical and near-infrared astronomical telescope in Turkey will be operated. Since the observatory will observe in the near-infrared (NIR), it is intended to perform PWV measurements of the atmosphere above the site by using signal delays in Global Positioning System (GPS) communication. The analysis of the GPS data recorded on the summit for almost one year shows that the atmosphere over the site of the observatory, which has an altitude of 3170 m, has favorable conditions for NIR observations. From GPS measurements, we report that the site had an average PWV of 3.2 mm and a median PWV of 2.7 mm between October 6, 2016, and June 15, 2017. We also present the time dependency of the PWV content and the correlations between the amount of PWV and the other meteorological records gathered from radiosonde flights and ground-based measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the literature, some authors prefer to use integrated water vapor (IWP) instead of PWV. The relationship between these two quantities is given by PWV = IWP / ρ, where ρ is the density of liquid water, e.g., as defined in [3]

  2. http://www.suominet.ucar.edu

  3. Global Navigation Satellite System

  4. http://www.igs.org/

References

  1. Askne, J., Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 22, 379–386 (1987)

    Article  ADS  Google Scholar 

  2. Baudet, J., Jolissaint, L., Keskin, O., Yesilyaprak, C., Yerli, S.: Design of a derotator for the 4 m dag telescope. In: Ground-Based and Airborne Instrumentation for Astronomy VI, Proceedings SPIE, vol. 9908, p 99085L (2016)

  3. Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., Ware, R.: Gps meteorology: remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res.-Atmos. 97, 15 (1992)

    Article  Google Scholar 

  4. Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Rocken, C., Ware, R.: Gps meteorology: mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 33, 379–386 (1994)

    Article  ADS  Google Scholar 

  5. Blewitt, G.: Gps data processing methodology: from theory to applications. In: Teunissen, P., Kleusberg, A. (eds.) GPS for Geodesy, pp 231–270. Springer, Berlin (1998)

    Chapter  Google Scholar 

  6. Bosilovich, M.G., Kennedy, J., Dee, D., Allan, R., O’Neill, A.: On the Reprocessing and Reanalysis of Observations for Climate, pp 51–71. Springer, Netherlands (2013)

    Google Scholar 

  7. Buck, A.: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981)

    Article  ADS  Google Scholar 

  8. Castro-Almazán, J., Muñoz-Tuñón, C., García-Lorenzo, B., Pérez-Jordán, G., Varela, A., Romero, I.: Precipitable water vapour at the canarian observatories (teide and roque de los muchachos) from routine Gps. In: Observatory Operations: Strategies, Processes, and Systems VI, Proceedings SPIE, vol. 9910, p 99100P (2016)

  9. Chacón, A., Cuevas, O., Pozo, D., Marín, J., Oyanadel, A., Dougnac, C., Cortes, L., Illanes, L., Caneo, M., Curé, M., Sarazin, M., Kerber, F., Smette, A., Rabanus, D., Querel, R., Tompkins, G.: Measuring and forecasting of pwv above La Silla, Apex and Paranal observatories. In: Rev. Mex. of A.& A., Serie de Conferencias, vol. 41, pp 20–23 (2011)

  10. Davis, J., Herring, T., Shapiro, I., Rogers, A., Elgered, G.: Geodesy by radio interferometry - effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 20, 1593–1607 (1985)

    Article  ADS  Google Scholar 

  11. Dee, D., Fasullo, J., Shea, D., Walsh, J., NCAR-Staff (eds.) The climate data guide: Atmospheric reanalysis: overview and comparison tables. https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables (2016). Accessed on 18 July 2018

  12. Fujita, M., Kimura, F., Yoneyama, K., Yoshizaki, M.: Verification of precipitable water vapor estimated from shipborne gps measurements. Geophys. Res. Lett. 35, L13803 (2008)

    Article  ADS  Google Scholar 

  13. García-Lorenzo, B., Eff-Darwich, A., Castro-Almazán, J., Pinilla-Alonso, N., Muñoz-Tuñón, C., Rodríguez-Espinosa, J.M.: Infrared astronomical characteristics of the roque de los muchachos observatory: precipitable water vapour statistics. MNRAS 405, 2683–2696 (2010)

    ADS  Google Scholar 

  14. Gleckler, P.J., Taylor, K.E., Doutriaux, C.: Performance metrics for climate model. J. Geophys. Res:Atm. 113(D6) (2008)

  15. Goad, C., Goodman, L.: A modified tropospheric refraction correction model. In: Proceedings of the American Geophysical Union Annual Fall Meeting at CA, 12–17 December, p. 28 (1974)

  16. Hopfield, H.: Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res. 74(18), 4487–4499 (1969)

    Article  ADS  Google Scholar 

  17. Jolissaint, L., Keskin, O., Zago, L., Kaan Yerli, S., Yesilyaprak, C., Mudry, E., Lousberg, G.: The design of an adaptive optics telescope: the case of dag. In: Ground-Based and Airborne Telescopes VI, Proceedings SPIE, vol. 9906, p 99063J (2016)

  18. Keskin, O., Yesilyaprak, C, Yerli, S, Zago, L, Jolissaint, L: Turkey’s next big science project: dag the 4 meter telescope. In: Ground-Based and Airborne Telescopes V, Proceedings SPIE, vol. 9145, p 914547 (2014)

  19. Kidger, M., Rodríguez-espinosa, J., del Rosario, J., Trancho, G.: Water vapour monitoring at the roque de los muchachos observatory (1996–1998. New Astron. Rev. 42, 537–542 (1998)

    Article  ADS  Google Scholar 

  20. Kidston, J., Frierson, D.M.W., Renwick, J.A., Vallis, G.K.: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate 23(23), 6186–6199 (2010)

    Article  ADS  Google Scholar 

  21. Kravtsov, S., Wyatt, M.G., Curry, J.A., Tsonis, A.A.: Two contrasting views of multidecadal climate variability in the twentieth century. Geophys. Res. Lett. 41(19), 6881–6888 (2014)

    Article  ADS  Google Scholar 

  22. Lan, Z., Zhang, B., Geng, Y.: Establishment and analysis of global gridded tm-ts relationship model. Geodesy and Geodynamics 7(2), 101–107 (2016)

    Article  Google Scholar 

  23. Leick, A., Rapoport, L., Tatarnikov, D.: GPS Satellite Surveying, 4th edn. Wiley, New York (2015)

    Google Scholar 

  24. Marín, J., Pozo, D., Curé, M.: Estimating and forecasting the precipitable water vapor from goes satellite data at high altitude sites. A&A 573, A41 (2015)

    Article  ADS  Google Scholar 

  25. Moon, Y., Choi, K.H., Park, P.H.: Estimation of precipitable water vapor using the gps. Journal of Astronomy and Space Sciences 16, 61–68 (1999)

    ADS  Google Scholar 

  26. Niell, A.: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 101, 3227–3246 (1996)

    Article  ADS  Google Scholar 

  27. Niell, A., Coster, A., Solheim, F., Mendes, V., Toor, P., Langley, R., Upham, C.: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, gps, and vlbi. J. Atmos. Oceanic Tech. 18, 830 (2001)

    Article  ADS  Google Scholar 

  28. Okamura, O., Kimura, F.: Behavior of gps-derived precipitable water vapor in the mountain lee after the passage of a cold front. Geophys. Res. Lett. 30(14), 1746 (2003)

    Article  ADS  Google Scholar 

  29. Otárola, A., Travouillon, T., Schöck, M., Els, S., Riddle, R., Skidmore, W., Dahl, R., Naylor, D., Querel, R.: Thirty meter telescope site testing x: precipitable water vapor. PASP 122, 470 (2010)

    Article  ADS  Google Scholar 

  30. Parker, W.: Reanalyses and observations: what’s the difference? Bull. Am. Meteorol. Soc. 97(9), 1565–1572 (2016)

    Article  ADS  Google Scholar 

  31. Peixoto, J., Oort, A.: The climatology of relative humidity in the atmosphere. J. Climate 9, 3443–3463 (1996)

    Article  ADS  Google Scholar 

  32. Pérez-Jordán, G., Castro-Almazán, J., Muñoz-Tuñón, C., Codina, B., Vernin, J.: Forecasting the precipitable water vapour content: validation for astronomical observatories using radiosoundings. MNRAS 452, 1992–2003 (2015)

    Article  ADS  Google Scholar 

  33. Pozo, D., Illanes, L., Caneo, M., Curé, M.: Pmv forecast validation at alma site. In: Rev. Mex. of A.& A., Serie de Conferencias, vol. 41, pp 55–58 (2011)

  34. Rocken, C., Hove, T., Johnson, J., Solheim, F., Ware, R., Bevis, M., Chiswell, S., Businger, S.: Gps/storm-gps sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Tech. 12, 468 (1995)

    Article  ADS  Google Scholar 

  35. Saastamoinen, J.: Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In: Henriksen, S., Mancini, A., Chovitz, B. (eds.) The Use of Artificial Satellites for Geodesy, American Geophysical Union (AGU), vol. 15, p 247 (1972)

  36. Santer, B.D., Wigley, T.M.L., Simmons, A.J., Kållberg, PW., Kelly, G.A., Uppala, S.M., Ammann, C., Boyle, J.S., Brüggemann, W., Doutriaux, C., Fiorino, M., Mears, C., Meehl, G.A., Sausen, R., Taylor, K.E., Washington, W.M., Wehner, M.F., Wentz, F.J.: Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res.:Atm, 109(D21) (2004)

    Article  Google Scholar 

  37. Schmidt, G. Reanalyses ‘r’ us. http://www.realclimate.org/index.php/archives/2011/07/reanalyses-r-us/ (2011). Accessed on 18 July 2018

  38. Seidel, D., Sun, B., Pettey, M., Reale, A.: Global radiosonde balloon drift statistics. J. Geophys. Res.:Atm. 116(D7) (2011)

  39. Voziakova, O.V.: Atmospheric transparency over mount shatdzhatmaz in the optical and near-infrared ranges. Astron. Lett. 38, 271–279 (2012)

    Article  ADS  Google Scholar 

  40. Yao, Y., Zhang, B., Xu, C., Chen, J.J.: Analysis of the global tm-ts correlation and establishment of the latitude-related linear model. Chin. Sci. Bull. Papers 59(19), 2340–2347 (2014)

    Article  ADS  Google Scholar 

  41. Yuan, Y., Zhang, K., Rohm, W., Choy, S., Norman, R., Wang, C.: Real-time retrieval of precipitable water vapor from gps precise point positioning. J. Geophys. Res.-Atmos. 119(D18), 10 (2014)

    Google Scholar 

Download references

Acknowledgements

The Eastern Anatolia Observatory, DAG, is fully funded by the Ministry of Development of Turkey (Project ID: 2011K120230). This study was supported by TUBITAK, The Scientific and Technological Research Council of Turkey, under the contract number of 115F032. We thank Turkish State Meteorological Service for their supply of meteorological data recorded in Erzurum Province and all staff of Atatürk University, Astrophysics Research and Application Center (ATASAM) for providing infrastructure facilities. We also thank the anonymous referee for his/her valuable comments to improve the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacit Özdemir.

Additional information

http://dag.atauni.edu.tr, http://atasam.atauni.edu.tr/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, S., Yeşilyaprak, C., Aktuğ, B. et al. Precipitable water vapor (PWV) estimations from the site of the Eastern Anatolia Observatory (DAG), a new astronomical observatory in Turkey. Exp Astron 46, 323–336 (2018). https://doi.org/10.1007/s10686-018-9605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-018-9605-2

Keywords

Navigation