A better characterization of the chemical composition of exoplanets atmospheres with ARIEL


Since the discovery of the first extrasolar planet more than twenty years ago, nearly four thousand planets orbiting stars other than the Sun (http://exoplanet.eu/) have been discovered. Current observational instruments (on board the Hubble Space Telescope, Spitzer, and on ground-based facilities) have allowed the scientific community to obtain important information on the physical and chemical properties of these planets. However, for a more in-depth characterisation of these worlds, more powerful telescopes are needed. Thanks to the high sensitivity of their instruments, the next generation of space observatories (e.g. JWST, ARIEL) will provide observations of unprecedented quality, allowing us to extract far more information than what was previously possible. Such high quality observations will provide constraints on theoretical models of exoplanet atmospheres and lead to a greater understanding of their physics and chemistry. Important modelling efforts have been carried out during the past few years, showing that numerous parameters and processes (such as the elemental abundances, temperature, mixing, etc.) are likely to affect the atmospheric composition of exoplanets and subsequently the observable spectra. In this manuscript, we review the different parameters that can influence the molecular composition of exoplanet atmospheres. We show that the high-precision of ARIEL observations will improve our view and characterisation of exoplanet atmospheres. We also consider future developments that are necessary to improve atmospheric models, driven by the need to interpret the available observations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26


  1. 1.


  2. 2.


  3. 3.

    Nominal ζ is 10 × solar metallicity and nominal Fλ, T, and Kzz are represented on their Figs. 2 and 3 respectively.


  1. 1.

    Agúndez, M., Venot, O., Iro, N., Selsis, F., Hersant, F., Hébrard, E., Dobrijevic, M.: The impact of atmospheric circulation on the chemistry of the hot Jupiter HD 209458b. Astron. Astrophys. 548, A73 (2012). https://doi.org/10.1051/0004-6361/201220365

    ADS  Article  Google Scholar 

  2. 2.

    Agúndez, M., Parmentier, V., Venot, O., Hersant, F., Selsis, F.: Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b. Astron. Astrophys. 564, A73 (2014). https://doi.org/10.1051/0004-6361/201322895

    ADS  Article  Google Scholar 

  3. 3.

    Agúndez, M., Venot, O., Selsis, F., Iro, N.: The puzzling chemical composition of GJ 436b’s atmosphere: influence of tidal heating on the Chemistry. Astrophys. J. 781, 68 (2014). https://doi.org/10.1088/0004-637X/781/2/68

    ADS  Article  Google Scholar 

  4. 4.

    Allard, F., Hauschildt, P.H., Alexander, D.R., Tamanai, A., Schweitzer, A.: The limiting effects of dust in brown dwarf model atmospheres. Astrophys. J. 556, 357 (2001). https://doi.org/10.1086/321547

    ADS  Article  Google Scholar 

  5. 5.

    Barman, T.: Identification of absorption features in an extrasolar planet atmosphere. Astrophys. J. Lett. 661, L191–L194 (2007). https://doi.org/10.1086/518736, arXiv:0704.1114

    ADS  Article  Google Scholar 

  6. 6.

    Burrows, A., Sharp, C.: Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843 (1999)

    ADS  Article  Google Scholar 

  7. 7.

    Burrows, A., Hubeny, I., Budaj, J., Knutson, H., Charbonneau, D.: Theoretical spectral models of the planet hd 209458b with a thermal inversion and water emission bands. Astrophys. J. Lett. 668, L171 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    Burrows, A., Budaj, J., Hubeny, I.: Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. Astrophys. J. 678, 1436 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    Cavalié, T., Venot, O., Selsis, F., Hersant, F., Hartogh, P., Leconte, J.: Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances. Icarus 291, 1–16 (2017). https://doi.org/10.1016/j.icarus.2017.03.015

    ADS  Article  Google Scholar 

  10. 10.

    Cooper, C.S., Showman, A.P.: Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006). https://doi.org/10.1086/506312

    ADS  Article  Google Scholar 

  11. 11.

    Drummond, B., Tremblin, P., Baraffe, I., Amundsen, D.S., Mayne, N.J., Venot, O., Goyal, J.: The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot jupiters. arXiv:1607.04062 (2016)

  12. 12.

    France, K., Froning, C.S., Linsky ea, J.L.: The ultraviolet radiation environment around m dwarf exoplanet host stars. Astrophys. J. 763, 149 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    France, K., Parke Loyd, R.O., Youngblood, A., Brown, A., Schneider, P.C., Hawley, S.L., Froning, C.S., Linsky, J.L., Roberge, A., Buccino, A.P., Davenport, J.R.A., Fontenla, J.M., Kaltenegger, L., Kowalski, A.F., Mauas, P.J.D., Miguel, Y., Redfield, S., Rugheimer, S., Tian, F., Vieytes, M.C., Walkowicz, L.M., Weisenburger, K.L.: The muscles treasury survey. I. Motivation and overview. Astrophys. J. 820, 89 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Goldreich, P., Soter, S.: Q in the solar system. Icarus 5, 375–389 (1966). https://doi.org/10.1016/0019-1035(66)90051-0

    ADS  Article  Google Scholar 

  15. 15.

    Guillot, T.: On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, 13 (2010). https://doi.org/10.1051/0004-6361/200913396

    ADS  Article  Google Scholar 

  16. 16.

    Heng, K., Lyons, J.R.: Carbon dioxide in exoplanetary atmospheres: rarely dominant compared to carbon monoxide and water in hot, hydrogen-dominated atmospheres. Astrophys. J. 817, 149 (2016). https://doi.org/10.3847/0004-637X/817/2/149

    ADS  Article  Google Scholar 

  17. 17.

    Hu, R., Seager, S., Bains, W.: Photochemistry in terrestrial exoplanet atmospheres. I. Photochemistry model and benchmark cases. Astrophys. J. 761, 166 (2012). https://doi.org/10.1088/0004-637X/761/2/166

    ADS  Article  Google Scholar 

  18. 18.

    Hut, P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)

    ADS  MATH  Google Scholar 

  19. 19.

    Kopparapu, R., Kasting, J.F., Zahnle, K.J.: A photochemical model for the carbon-rich planet wasp-12b. Astrophys. J. 745, 77 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    Kopparapu, R., Ramirez, R.M., Jea, S.K.: Habitable zones around main-sequence stars: Dependence on planetary mass. Astrophys. J. Lett. 787, L29 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    Koskinen, T.T., Aylward, A.D., Smith, C.G.A., Miller, S.: A thermospheric circulation model for extrasolar giant planets. Astrophys. J. 661, 515–526 (2007). https://doi.org/10.1086/513594

    ADS  Article  Google Scholar 

  22. 22.

    Kurucz, R.L.: Model atmospheres for g, f, a, b, and o stars. ApJS 40, 1–340 (1979). https://doi.org/10.1086/190589

    ADS  Article  Google Scholar 

  23. 23.

    Lavvas, P., Koskinen, T., Yelle, R.V.: Electron densities and alkali atoms in exoplanet atmospheres. Astrophys. J. 796, 15 (2014). https://doi.org/10.1088/0004-637X/796/1/15

    ADS  Article  Google Scholar 

  24. 24.

    Leconte, J., Chabrier, G., Baraffe, I., Levrard, B.: Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010). https://doi.org/10.1051/0004-6361/201014337

    ADS  Article  Google Scholar 

  25. 25.

    Lewis, N.K., Showman, A.P., Fortney, J.J., Marley, M.S., Freedman, R.S., Lodders, K.: Atmospheric circulation of eccentric hot Neptune GJ436b. Astrophys. J. 720, 344–356 (2010). https://doi.org/10.1088/0004-637X/720/1/344

    ADS  Article  Google Scholar 

  26. 26.

    Liang, M.C., Parkinson, C.D., Lee, A.Y.T., Yung, Y.L., Seager, S.: Source of atomic hydrogen in the atmosphere of HD 209458b. Astrophys. J. Lett. 596, L247–L250 (2003). https://doi.org/10.1086/379314

    ADS  Article  Google Scholar 

  27. 27.

    Liang, M.C., Seager, S., Parkinson, C.D., Lee, A.Y.T., Yung, Y.L.: On the insignificance of photochemical hydrocarbonx aerosols in the atmospheres of close-in extrasolar giant planets. Astrophys. J. Lett. 605, L61–L64 (2004). https://doi.org/10.1086/392509

    ADS  Article  Google Scholar 

  28. 28.

    Line, M.R., Liang, M.C., Yung, Y.L.: High-temperature photochemistry in the atmosphere of hd 189733b. Astrophys. J. 717, 496–502 (2010). https://doi.org/10.1088/0004-637X/717/1/496

    ADS  Article  Google Scholar 

  29. 29.

    Madhusudhan, N.: C/O Ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758, 36 (2012). https://doi.org/10.1088/0004-637X/758/1/36

    ADS  Article  Google Scholar 

  30. 30.

    Madhusudhan, N., Mousis, O., Johnson, T.V., Lunine, J.I.: Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions. Astrophys. J. 743, 191 (2011). https://doi.org/10.1088/0004-637X/743/2/191

    ADS  Article  Google Scholar 

  31. 31.

    Madhusudhan, N., Agúndez, M., Moses, J.I., Hu, Y.: Exoplanetary atmospheres - chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016). https://doi.org/10.1007/s11214-016-0254-3

    ADS  Article  Google Scholar 

  32. 32.

    Miguel, Y., Kaltenegger, L.: Exploring atmospheres of hot mini-neptunes and extrasolar giant planets orbiting different stars with application to hd 97658b, wasp-12b, corot-2b, xo-1b, and hd 189733b. Astrophys. J. 780, 166 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    Miguel, Y., Kaltenegger, L., Linsky, J.L., Rugheimer, S.: The effect of lyman α radiation on mini-neptune atmospheres around m stars: application to gj 436b. Mon. Not. R. Astron. Soc. 446, 345 (2015)

    ADS  Article  Google Scholar 

  34. 34.

    Mollière, P., van Boekel, R., Dullemond, C., Henning, T., Mordasini, C.: Model atmospheres of irradiated exoplanets: The influence of stellar parameters, metallicity, and the C/O ratio. Astrophys. J. 813, 47 (2015). https://doi.org/10.1088/0004-637X/813/1/47

    ADS  Article  Google Scholar 

  35. 35.

    Moses, J.I., Visscher, C., Fortney, J.J., Showman, A.P., Lewis, N.K., Griffith, C.A., Klippenstein, S.J., Shabram, M., Friedson, A.J., Marley, M.S., Freedman, R.S.: Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011). https://doi.org/10.1088/0004-637X/737/1/15

    ADS  Article  Google Scholar 

  36. 36.

    Moses, J.I., Madhusudhan, N., Visscher, C., Freedman, R.S.: Chemical consequences of the C/O ratio on hot Jupiters: examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. Astrophys. J. 763, 25 (2013). https://doi.org/10.1088/0004-637X/763/1/25

    ADS  Article  Google Scholar 

  37. 37.

    Parmentier, V., Guillot, T.: A non-grey analytical model for irradiated atmospheres. I: Derivation. Astron. Astrophys., 562 (2014)

  38. 38.

    Parmentier, V., Showman, A.P., Lian, Y.: 3d mixing in hot jupiters atmospheres. I. application to the day/night cold trap in hd 209458b. Astron. Astrophys. 558, A81 (2013)

    Article  Google Scholar 

  39. 39.

    Prinn, R.G., Barshay, S.S.: Carbon monoxide on Jupiter and implications for atmospheric convection. Science 198, 1031–1034 (1977). https://doi.org/10.1126/science.198.4321.1031

    ADS  Article  Google Scholar 

  40. 40.

    Puig, L., Isaak, K., Linder, M., Escudero, I., Crouzet, P.E., Walker, R., Ehle, M., Hübner, J., Timm, R., de Vogeleer, B., Drossart, P., Hartogh, P., Lovis, C., Micela, G., Ollivier, M., Ribas, I., Snellen, I., Swinyard, B., Tinetti, G., Eccleston, P.: The phase 0/A study of the ESA M3 mission candidate EChO. Exper. Astron. 40, 393–425 (2015). https://doi.org/10.1007/s10686-014-9419-9

    ADS  Article  Google Scholar 

  41. 41.

    Rimmer, P.B., Helling, C.: A chemical kinetics network for lightning and life in planetary atmospheres. Astrophys. J. Suppl. Ser. 224, 9 (2016). https://doi.org/10.3847/0067-0049/224/1/9

    ADS  Article  Google Scholar 

  42. 42.

    Rocchetto, M., Waldmann, I.P., Venot, O., Lagage, P.O., Tinetti, G.: Exploring biases of atmospheric retrievals in simulated JWST transmission spectra of hot jupiters. Astrophys. J. 833, 120 (2016). https://doi.org/10.3847/1538-4357/833/1/120

    ADS  Article  Google Scholar 

  43. 43.

    Rothman, L., Gordon, I., Barber, R., Dothe, H., Gamache, R., Goldman, A., Perevalov, V., Tashkun, S., Tennyson, J.: Hitemp, the high-temperature molecular spectroscopic database. J. Quant. Spectros. Radiat. Transfer 111(15), 2139–2150 (2010)

    ADS  Article  Google Scholar 

  44. 44.

    Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Simecková, M, Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database. JQSRT 110, 533–572 (2009). https://doi.org/10.1016/j.jqsrt.2009.02.013

    ADS  Article  Google Scholar 

  45. 45.

    Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., Campargue, A., Chance, K., Cohen, E.A., Coudert, L.H., Devi, V.M., Drouin, B.J., Fayt, A., Flaud, J.M., Gamache, R.R., Harrison, J.J., Hartmann, J.M., Hill, C., Hodges, J.T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.J., Li, G., Long, D.A., Lyulin, O.M., Mackie, C.J., Massie, S.T., Mikhailenko, S., Müller, H.S.P., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E.R., Richard, C., Smith, M.A.H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G.C., Tyuterev, V.G., Wagner, G.: The HITRAN2012 molecular spectroscopic database. JQSRT 130, 4–50 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.002

    ADS  Article  Google Scholar 

  46. 46.

    Rugheimer, S., Kaltenegger, S., Aea, Zsom: Spectral fingerprints of earth-like planets around fgk stars. Astrobiology 13, 251 (2013)

    ADS  Article  Google Scholar 

  47. 47.

    Sarkar, S., Papageorgiou, A., Pascale, E.: Exploring the potential of the ExoSim simulator for transit spectroscopy noise estimation. In: Proceedings of the SPIE on Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, vol. 9904, p 99043R (2016). https://doi.org/10.1117/12.2234216

  48. 48.

    Seager, S., Sasselov, D.: Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916 (2000)

    ADS  Article  Google Scholar 

  49. 49.

    Sharp, C., Burrows, A.: Atomic and molecular opacities for brown dwarf and giant planet atmospheres. Astrophys. J. Suppl. Ser. 168, 140 (2007)

    ADS  Article  Google Scholar 

  50. 50.

    Southworth, J.: Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models. Mon. Not. R. Astron. Soc. 408, 1689–1713 (2010). https://doi.org/10.1111/j.1365-2966.2010.17231.x

    ADS  Article  Google Scholar 

  51. 51.

    Tennyson, J., Yurchenko, S.N.: ExoMol: molecular line lists for exoplanet and other atmospheres. MNRAS 425, 21–33 (2012). https://doi.org/10.1111/j.1365-2966.2012.21440.x, arXiv:1204.0124

    ADS  Article  Google Scholar 

  52. 52.

    Tsai, S.M., Lyons, J.R., Grosheintz, L., Rimmer, P.B., Kitzmann, D., Heng, K.: VULCAN: an open-source, validated chemical kinetics python code For exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017). https://doi.org/10.3847/1538-4365/228/2/20

    ADS  Article  Google Scholar 

  53. 53.

    Tsiaras, A., Rocchetto, M., Waldmann, I.P., Venot, O., Varley, R., Morello, G., Damiano, M., Tinetti, G., Barton, E.J., Yurchenko, S.N., Tennyson, J.: Detection of an atmosphere around the super-earth 55 Cancri e. Astrophys. J. 820, 99 (2016). https://doi.org/10.3847/0004-637X/820/2/99

    ADS  Article  Google Scholar 

  54. 54.

    Venot, O., Hébrard, E., Agúndez, M., Dobrijevic, M., Selsis, F., Hersant, F., Iro, N., Bounaceur, R.: A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 546, A43 (2012). https://doi.org/10.1051/0004-6361/201219310

    ADS  Article  Google Scholar 

  55. 55.

    Venot, O., Fray, N., Bénilan, Y., Gazeau, M.C., Hébrard, E., Larcher, G., Schwell, M., Dobrijevic, M., Selsis, F.: High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets. Astron. Astrophys. 551, A131 (2013). https://doi.org/10.1051/0004-6361/201220945

    Article  Google Scholar 

  56. 56.

    Venot, O., Agúndez, M., Selsis, F., Tessenyi, M., Iro, N.: The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH4/CO ratio. Astron. Astrophys. 562, A51 (2014). https://doi.org/10.1051/0004-6361/201322485

    ADS  Article  Google Scholar 

  57. 57.

    Venot, O., Hébrard, E., Agúndez, M., Decin, L., Bounaceur, R.: New chemical scheme for studying carbon-rich exoplanet atmospheres. Astron. Astrophys. 577, A33 (2015). https://doi.org/10.1051/0004-6361/201425311

    ADS  Article  Google Scholar 

  58. 58.

    Venot, O., Rocchetto, M., Carl, S., Roshni Hashim, A., Decin, L.: Influence of stellar flares on the chemical composition of exoplanets and spectra. Astrophys. J. 830, 77 (2016). https://doi.org/10.3847/0004-637X/830/2/77

    ADS  Article  Google Scholar 

  59. 59.

    Venot, O., Bénilan, Y., Fray, N., Gazeau, M.C., Lefèvre, F., Es-sebbar, E., Hébrard, E., Schwell, M., Bahrini, C., Montmessin, F., Lefèvre, M., Waldmann, I.P.: VUV-Absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres. Astron. Astrophys. 609, A34 (2018). https://doi.org/10.1051/0004-6361/201731295

    Article  Google Scholar 

  60. 60.

    Wakelam, V., Herbst, E., Loison, J.C., Smith, I.W.M., Chandrasekaran, V., Pavone, B., Adams, N.G., Bacchus-Montabonel, M.C., Bergeat, A., Béroff, K., Bierbaum, V.M., Chabot, M., Dalgarno, A., van Dishoeck, E.F., Faure, A., Geppert, W.D., Gerlich, D., Galli, D., Hébrard, E., Hersant, F., Hickson, K.M., Honvault, P., Klippenstein, S.J., Le Picard, S., Nyman, G., Pernot, P., Schlemmer, S., Selsis, F., Sims, I.R., Talbi, D., Tennyson, J., Troe, J., Wester, R., Wiesenfeld, L.: A kinetic database for astrochemistry (KIDA). Astrophys. J. Suppl. 199, 21 (2012). https://doi.org/10.1088/0067-0049/199/1/21

    ADS  Article  Google Scholar 

  61. 61.

    Waldmann, I.P., Rocchetto, M., Tinetti, G., Barton, E.J., Yurchenko, S.N., Tennyson, J.: Tau-rex. ii. retrieval of emission spectra. Astrophys. J. 813 (1), 13 (2015)

    ADS  Article  Google Scholar 

  62. 62.

    Waldmann, I.P., Tinetti, G., Rocchetto, M., Barton, E.J., Yurchenko, S.N., Tennyson, J.: Tau-rex i: a next generation retrieval code for exoplanetary atmospheres. Astrophys. J. 802(2), 107 (2015)

    ADS  Article  Google Scholar 

  63. 63.

    Youngblood, A., France, K., Loyd, P.R.O., Linsky, J., Redfield, S., Schneider, C.P., Wood, B.E., Brown, A., Froning, C., Miguel, Y., Rugheimer, S., Walkowicz, L.: The muscles treasury survey ii: intrinsic lyman alpha and extreme ultraviolet spectra of k and m dwarfs with exoplanets. The Astrophysical Journal. arXiv:160401032 (2016)

  64. 64.

    Zahnle, K., Marley, M.S., Fortney, J.J.: Thermometric Soots on Warm Jupiters? arXiv:0911.0728 (2009)

  65. 65.

    Zahnle, K., Marley, M.S., Freedman, R.S., Lodders, K., Fortney, J.J.: Atmospheric sulfur photochemistry on hot jupiters. Astrophys. J. Lett. 701, L20–L24 (2009). https://doi.org/10.1088/0004-637X/701/1/L20

    ADS  Article  Google Scholar 

Download references


All figures extracted from previous publications have been reproduced with permission. The authors deeply thank the anonymous referee for his/her comments that greatly improve the manuscript. O. V. thanks the CNRS/INSU Programme National de Planétologie (PNP) for funding support. B.D. acknowledges funding from the European Research Council (ERC) under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 336792. I.P.W. acknowledges funding from the European Research Council (ERC) under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 758892. T. Z. is supported by the European Research Council (ERC) project ExoLights (617119) and from INAF trough the ”Progetti Premiali” funding scheme of the Italian Ministry of Education, University, and Research. Y.M. greatly appreciates the CNES post-doctoral fellowship program and support for travel funding.

Author information



Corresponding author

Correspondence to Olivia Venot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venot, O., Drummond, B., Miguel, Y. et al. A better characterization of the chemical composition of exoplanets atmospheres with ARIEL. Exp Astron 46, 101–134 (2018). https://doi.org/10.1007/s10686-018-9597-y

Download citation


  • Atmospheres
  • Exoplanets
  • Composition
  • Modelling
  • Laboratory measurements
  • Observations