Advertisement

ALOHA—Astronomical Light Optical Hybrid Analysis

From experimental demonstrations to a MIR instrument proposal
  • L. Lehmann
  • P. Darré
  • L. Szemendera
  • J. T. Gomes
  • R. Baudoin
  • D. Ceus
  • S. Brustlein
  • L. Delage
  • L. Grossard
  • F. Reynaud
Original Article
  • 29 Downloads
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe

Abstract

This paper gives an overview of the Astronomical Light Optical Hybrid Analysis (ALOHA) project dedicated to investigate a new method for high resolution imaging in mid infrared astronomy. This proposal aims to use a non-linear frequency conversion process to shift the thermal infrared radiation to a shorter wavelength domain compatible with proven technology such as guided optics and detectors. After a description of the principle, we summarise the evolution of our study from the high flux seminal experiments to the latest results in the photon counting regime.

Keywords

High angular resolution Interferometry Optical fibre Non-linear optics Aperture synthesis Sum-frequency generation 

Notes

Acknowledgements

This work has been financially supported by the Centre National d’Études Spatiales (CNES), the Institut National des Sciences de l’Univers (INSU), Thales Alenia Space, Airbus Group, Leukos and the Région Limousin.

References

  1. 1.
    Baudoin, R., Darré, P., Gomes, J.-T., Fabert, M., Grossard, L., Delage, L., Reynaud, F., Scott, N.J., Sturmann, J., Ten Brummelaar, T.A., du Foresto Coudé, V.: ALOHA 1.55 m implementation on the CHARA telescope array: on-sky sensitivity tests. J. Astron. Instrum. 1650006. (2016).  https://doi.org/10.1142/S2251171716500069
  2. 2.
    Boyd, R.W.: Nonlinear Optics. Academic Press, Amsterdam; Boston (2008)Google Scholar
  3. 3.
    Brustlein, S., Del Rio, L., Tonello, A., Delage, L., Reynaud, F., Herrmann, H., Sohler, W.: Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis. Phys. Rev. Lett. 100, 153903 (2008).  https://doi.org/10.1103/PhysRevLett.100.153903 ADSCrossRefGoogle Scholar
  4. 4.
    Ceus, D., Tonello, A., Grossard, L., Delage, L., Reynaud, F., Herrmann, H., Sohler, W.: Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging. Opt. Express 19, 8616 (2011).  https://doi.org/10.1364/OE.19.008616 ADSCrossRefGoogle Scholar
  5. 5.
    Ceus, D., Reynaud, F., Woillez, J., Lai, O., Delage, L., Grossard, L., Baudoin, R., Gomes, J.-T., Bouyeron, L., Herrmann, H., Sohler, W.: Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer. Mon. Not. R. Astron. Soc. Lett. 427, L95–L98 (2012).  https://doi.org/10.1111/j.1745-3933.2012.01352.x ADSGoogle Scholar
  6. 6.
    Ceus, D., Delage, L., Grossard, L., Reynaud, F., Herrmann, H., Sohler, W.: Contrast and phase closure acquisitions in photon counting regime using a frequency upconversion interferometer for high angular resolution imaging. MNRAS (2013).  https://doi.org/10.1093/mnras/sts654
  7. 7.
    Darré, P., Szemendera, L., Grossard, L., Delage, L., Reynaud, F.: Effect of spectral sampling on the temporal coherence analysis of a broadband source in a SFG interferometer. Opt. Express 23, 25450 (2015).  https://doi.org/10.1364/OE.23.025450 ADSCrossRefGoogle Scholar
  8. 8.
    Darré, P., Baudoin, R., Gomes, J.-T., Scott, N.J., Delage, L., Grossard, L., Sturmann, J., Farrington, C., Reynaud, F., Brummelaar, T.A.T.: First on-sky fringes with an up-conversion interferometer tested on a telescope array. Phys. Rev. Lett. 117 (2016).  https://doi.org/10.1103/PhysRevLett.117.233902
  9. 9.
    Gomes, J.-T., Delage, L., Baudoin, R., Grossard, L., Bouyeron, L., Ceus, D., Reynaud, F., Herrmann, H., Sohler, W.: Laboratory demonstration of spatial-coherence analysis of a Blackbody through an up-conversion interferometer. Phys. Rev. Lett. 112, 143904 (2014).  https://doi.org/10.1103/PhysRevLett.112.143904 ADSCrossRefGoogle Scholar
  10. 10.
    Louisell, W.H., Yariv, A., Siegman, A.E.: Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646–1654 (1961).  https://doi.org/10.1103/PhysRev.124.1646 ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Reynaud, F., Alleman, J.J., Connes, P.: Interferometric control of fiber lengths for a coherent telescope array. Appl. Opt. 31, 3736–3743 (1992).  https://doi.org/10.1364/AO.31.003736 ADSCrossRefGoogle Scholar
  12. 12.
    Simohamed, L.M., Reynaud, F.: A 2 m stroke optical fibre delay line. Pure Appl. Opt. 6, L37 (1997).  https://doi.org/10.1088/0963-9659/6/4/005 ADSCrossRefGoogle Scholar
  13. 13.
    Szemendera, L., Darré, P., Baudoin, R., Grossard, L., Delage, L., Herrmann, H., Silberhorn, C., Reynaud, F.: In-lab ALOHA mid-infrared up-conversion interferometer with high fringe contrast @λ = 3.39 μm. Mon. Not. R. Astron. Soc. 457, 3115–3118 (2016).  https://doi.org/10.1093/mnras/stw196 ADSCrossRefGoogle Scholar
  14. 14.
    Szemendera, L., Grossard, L., Delage, L., Reynaud, F.: In-laboratory ALOHA mid-infrared up-conversion interferometer in the photon counting regime at λ = 3.39 μm. Mon. Not. R. Astron. Soc. 468, 3484–3488 (2017).  https://doi.org/10.1093/mnras/stx780 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.XLIMLimogesFrance

Personalised recommendations