Advertisement

Experimental Astronomy

, Volume 45, Issue 2, pp 269–314 | Cite as

SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal

  • Saurabh Singh
  • Ravi Subrahmanyan
  • N. Udaya Shankar
  • Mayuri Sathyanarayana Rao
  • B. S. Girish
  • A. Raghunathan
  • R. Somashekar
  • K. S. Srivani
Original Article

Abstract

The global 21-cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts \(z \sim 6-30\), probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious signals can be well calibrated and any calibration residual does not mimic the signal. Shaped Antenna measurement of the background RAdio Spectrum (SARAS) is an ongoing experiment that aims to detect the global 21-cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additive signals leave no residuals with Fourier amplitudes exceeding 2 mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2 mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS 2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.

Keywords

Astronomical instrumentation Methods: observational Cosmic background radiation Cosmology: observations Dark ages Reionization First stars 

Notes

Acknowledgements

We thank the anonymous referee for their valuable comments and suggestions. We thank RRI Electronics Engineering Group, particularly Kasturi S., Madhavi S. and Kamini P. A., for their assistance in analog and digital receiver assembly. We also thank the Mechanical Engineering Group (RRI), led by Mohamed Ibrahim, for manufacturing the antenna along with construction of chassis and shielding cages for analog and digital receivers. Santosh Harish and Divya Jayasankar took an active role in developing real-time data acquisition software and system monitoring hardware respectively. We are grateful to the staff at the Gauribidanur Field Station led by Ashwathappa H.A. for providing excellent support in carrying out field tests and measurements.

References

  1. 1.
    Azeredo-Leme, C.: Clock jitter effects on sampling: a tutorial. IEEE Circuits Syst. Mag. 11(3), 26–37 (2011).  https://doi.org/10.1109/MCAS.2011.942067 CrossRefGoogle Scholar
  2. 2.
    Baars, J.W.M., Genzel, R., Pauliny-Toth, I.I.K., Witzel, A.: The absolute spectrum of CAS A - an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977)ADSGoogle Scholar
  3. 3.
    Bailey, D.k.: On a new method for exploring the upper ionosphere. Terr. Magn. Atmos. Electr. (Journal of Geophysical Research) 53, 41 (1948).  https://doi.org/10.1029/TE053i001p00041 ADSCrossRefGoogle Scholar
  4. 4.
    Balanis, C.A.: Antenna theory: analysis and design Wiley-Interscience (2005)Google Scholar
  5. 5.
    Barkana, R., Loeb, A.: A method for separating the physics from the astrophysics of high-redshift 21 centimeter fluctuations. The Astrophysical Journal Letters 624 (2), L65 (2005). http://stacks.iop.org/1538-4357/624/i=2/a=L65 ADSCrossRefGoogle Scholar
  6. 6.
    Becker, R.H., Fan, X., White, R.L., et al.: Evidence for reionization at z6: Detection of a gunn-peterson trough in a z = 6.28 quasar. Astron. J. 122(6), 2850 (2001). http://stacks.iop.org/1538-3881/122/i=6/a=2850 ADSCrossRefGoogle Scholar
  7. 7.
    Chipman, J.S.: Gauss-Markov theorem, pp 577–582. Springer, Berlin (2011).  https://doi.org/10.1007/978-3-642-04898-2_270
  8. 8.
    Cohen, A., Fialkov, A., Barkana, R., Lotem, M.: Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017).  https://doi.org/10.1093/mnras/stx2065 ADSCrossRefGoogle Scholar
  9. 9.
    Condon, J.J., Ransom, S.M.: Essential radio astronomy (princeton series in modern observational astronomy) princeton university press (2016)Google Scholar
  10. 10.
    Dicke, R.H.: The measurement of thermal radiation at microwave frequencies, pp 106–113. Springer, Netherlands (1982).  https://doi.org/10.1007/978-94-009-7752-5_11
  11. 11.
    Fan, X., Carilli, C.L., Keating, B.: Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006).  https://doi.org/10.1146/annurev.astro.44.051905.092514 ADSCrossRefGoogle Scholar
  12. 12.
    Florides, G., Kalogirou, S.: 1 annual ground temperature measurements at various depthsGoogle Scholar
  13. 13.
    Greenwood, P.E., Nikulin, M.S.: A guide to Chi-Squared testing (wiley series in probability and statistics) Wiley-Interscience (1996)Google Scholar
  14. 14.
    Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69(346), 383–393 (1974). http://www.jstor.org/stable/2285666 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Helmboldt, J.F., Kassim, N.E.: The evolution of cassiopeia a at low radio frequencies. Astron. J. 138, 838–844 (2009).  https://doi.org/10.1088/0004-6256/138/3/838 ADSCrossRefGoogle Scholar
  16. 16.
    Huang, Y.: Radiation efficiency measurements of small antennas, pp 1–21. Springer, Singapore (2014).  https://doi.org/10.1007/978-981-4560-75-7_71-1
  17. 17.
    Kester, W.: Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so you don’t get lost in the noise floor. MT-003 Tutorial. http://www.Analog.com/static/importedfiles/tutorials/MT-003.pdf (2009)
  18. 18.
    Malhotra, S., Rhoads, J.E.: Luminosity functions of ly emitters at redshifts z = 6.5 and z = 5.7: Evidence against reionization at z6.5. The Astrophysical Journal Letters 617(1), L5 (2004). http://stacks.iop.org/1538-4357/617/i=1/a=L5 ADSCrossRefGoogle Scholar
  19. 19.
    McGreer, I.D., Mesinger, A., D’Odorico, V.: Model-independent evidence in favour of an end to reionization by z6. Mon. Not. R. Astron. Soc. 447, 499–505 (2015).  https://doi.org/10.1093/mnras/stu2449 ADSCrossRefGoogle Scholar
  20. 20.
    Meys, R.: A wave approach to the noise properties of linear microwave devices. IEEE Trans. Microwave Theory Tech. 26(1), 34–37 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    Mirocha, J., Harker, G.J.A., Burns, J.o.: Interpreting the Global 21 cm Signal from High Redshifts. I. Model-independent constraints. Astrophys. J. 777, 118 (2013).  https://doi.org/10.1088/0004-637X/777/2/118 ADSCrossRefGoogle Scholar
  22. 22.
    Mirocha, J., Harker, G.J.A., Burns, J.o.: Interpreting the Global 21-cm signal from high Redshifts. II. Parameter Estimation for Models of Galaxy Formation. Astrophys. J. 813, 11 (2015).  https://doi.org/10.1088/0004-637X/813/1/11 ADSCrossRefGoogle Scholar
  23. 23.
    Monsalve, R.A., Rogers, A.E.E., Bowman, J.D., Mozdzen, T.j.: Calibration of the EDGES High-band Receiver to Observe the Global 21 cm Signature from the Epoch of Reionization. Astrophys. J. 835, 49 (2017).  https://doi.org/10.3847/1538-4357/835/1/49 ADSCrossRefGoogle Scholar
  24. 24.
    Morales, M.F., Wyithe, J.S.B.: Reionization and cosmology with 21-cm fluctuations. Annu. Rev. Astron. Astrophys. 48(1), 127–171 (2010).  https://doi.org/10.1146/annurev-astro-081309-130936 ADSCrossRefGoogle Scholar
  25. 25.
    Narula, S. C., Korhonen, P.J.: Multivariate multiple linear regression based on the minimum sum of absolute errors criterion. Eur. J. Oper. Res. 73(1), 70–75 (1994)CrossRefzbMATHGoogle Scholar
  26. 26.
    Nelder, J. A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965).  https://doi.org/10.1093/comjnl/7.4.308 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Neu, T.: Clock jitter analyzed in the time domain, part 1 Analog Applications (2010)Google Scholar
  28. 28.
    Nuttall, A.H.: Some Windows with Very Good Sidelobe Behavior. IEEE Trans. Acoust. Speech Signal Process. 29, 84–91 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    Offringa, A.R.: Algorithms for radio interference detection and removal. University of Groningen, Ph.D. thesis (2012)Google Scholar
  30. 30.
    Papoulis, A.: Probability, random variables, and stochastic processes. McGraw-Hill Kogakush (1981)Google Scholar
  31. 31.
    Patra, N., Bray, J.D., Roberts, P., Ekers, R.d.: Bandpass calibration of a wideband spectrometer using coherent pulse injection. Exp. Astron. 43, 119–129 (2017).  https://doi.org/10.1007/s10686-017-9523-8 ADSCrossRefGoogle Scholar
  32. 32.
    Patra, N., Subrahmanyan, R., Raghunathan, A., Udaya Shankar, R.d.: SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization. Exp. Astron. 36, 319–370 (2013).  https://doi.org/10.1007/s10686-013-9336-3 ADSCrossRefGoogle Scholar
  33. 33.
    Patra, N., Subrahmanyan, R., Sethi, S., Shankar, N.U., Raghunathan, A.: Saras measurement of the radio background at long wavelengths. Astrophys. J. 801(2), 138 (2015). http://stacks.iop.org/0004-637X/801/i=2/a=138 ADSCrossRefGoogle Scholar
  34. 34.
    Perley, R., Schwab, F., Bridle, A.: Synthesis imaging in radio astronomy. Astronomical Society of the Pacific, San Francisco (1989)Google Scholar
  35. 35.
    Pober, J.C., Liu, A., Dillon, J.S., et al.: What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization. Astrophys. J. 782(2), 66 (2014). http://stacks.iop.org/0004-637X/782/i=2/a=66 ADSCrossRefGoogle Scholar
  36. 36.
    Pozar, D.M., Kaufman, B.: Comparison of three methods for the measurement of printed antenna efficiency. IEEE Trans. Antennas Propag. 36(1), 136–139 (1988).  https://doi.org/10.1109/8.1084 ADSCrossRefGoogle Scholar
  37. 37.
    Price, D.C., Greenhill, L.J., Fialkov, A., et al.: Design and characterization of the Large-Aperture experiment to detect the dark age (LEDA) radiometer systems. ArXiv e-prints (2017)Google Scholar
  38. 38.
    Pritchard, J.R., Furlanetto, S.R.: 21-cm fluctuations from inhomogeneous x-ray heating before reionization. Mon. Not. R. Astron. Soc. 376(4), 1680–1694 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11519.x ADSCrossRefGoogle Scholar
  39. 39.
    Pritchard, J.R., Loeb, A.: Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal. Phys. Rev. D 82(023), 006 (2010).  https://doi.org/10.1103/PhysRevD.82.023006 Google Scholar
  40. 40.
    Rogers, A.E.E., Bowman, J.d.: Absolute calibration of a wideband antenna and spectrometer for accurate sky noise temperature measurements. Radio Sci. 47, RS0k06 (2012).  https://doi.org/10.1029/2011RS004962 CrossRefGoogle Scholar
  41. 41.
    Rumsey, V.: Frequency independent antennas. In: 1958 IRE international convention record, vol. 5, pp 114–118.  https://doi.org/10.1109/IRECON.1957.1150565 (1957)
  42. 42.
    Sathyanarayana Rao, M., Subrahmanyan, R., Udaya Shankar, N., Chluba, J.: On the Detection of Spectral Ripples from the Recombination Epoch. Astrophys. J. 810, 3 (2015).  https://doi.org/10.1088/0004-637X/810/1/3 ADSCrossRefGoogle Scholar
  43. 43.
    Sathyanarayana Rao, M., Subrahmanyan, R., Udaya Shankar, N., Chluba, J.: GMOSS: All-sky model of spectral radio brightness based on physical components and associated radiative processes. Astron. J. 153, 26 (2017).  https://doi.org/10.3847/1538-3881/153/1/26 ADSGoogle Scholar
  44. 44.
    Sathyanarayana Rao, M., Subrahmanyan, R., Udaya Shankar, N., Chluba, J.: Modeling the radio foreground for detection of CMB spectral distortions from the cosmic dawn and the epoch of reionization. Astrophys. J. 840, 33 (2017).  https://doi.org/10.3847/1538-4357/aa69bd ADSCrossRefGoogle Scholar
  45. 45.
    Sault, R.J., Teuben, P.J., Wright, M.C.H.: A retrospective View of MIRIAD. In: Shaw, R.A., Payne, H.E., Hayes, J.J.E. (eds.) Astronomical data analysis software and systems IV, astronomical society of the pacific conference series, vol. 77, p 433 (1995)Google Scholar
  46. 46.
    Sethi, S.K.: HI signal from re-ionization epoch. Mon. Not. R. Astron. Soc. 363 (3), 818–830 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09485.x ADSCrossRefGoogle Scholar
  47. 47.
    Shaver, P.A., Windhorst, R.A., Madau, P., de Bruyn, A.G.: Can the reionization epoch be detected as a global signature in the cosmic background?. Astron. Astrophys. 345, 380–390 (1999)ADSGoogle Scholar
  48. 48.
    Singh, S., Subrahmanyan, R., Udaya Shankar, N., et al.: First results on the Epoch of Reionization from first light with SARAS 2. The Astrophysical Journal Letters 845, L12 (2017).  https://doi.org/10.3847/2041-8213/aa831b ADSCrossRefGoogle Scholar
  49. 49.
    Singh, S., Subrahmanyan, R., Udaya Shankar, N., et al.: SARAS 2 constraints on global 21-cm signals from the Epoch of Reionization. ArXiv e-prints (2017)Google Scholar
  50. 50.
    Sokolowski, M., Tremblay, S.E., Wayth, R.b., et al.: BIGHORNS - Broadband instrument for global hydrogen reionisation signal. Publ. Astron. Soc. Aust. e004, 32 (2015).  https://doi.org/10.1017/pasa.2015.3 Google Scholar
  51. 51.
    Srivani, K.S., Girish, B.S., Shankar, N.U., Subrahmanyan, R.: A precision spectrometer for measuring signals from the epoch of cosmological recombination. In: 2014 XXXIth URSI general assembly and scientific symposium (URSI GASS).  https://doi.org/10.1109/URSIGASS.2014.6930031, pp 1–4 (2014)
  52. 52.
    Straw, R., Cebik, L., Hallidy, D., Jansson, D. (eds.): The ARRL Antenna Book. ARRL Antenna Book, ARRL (2007)Google Scholar
  53. 53.
    Stutzman, W.L., Thiele, G.A.: Antenna theory and design. 3 edn Wiley (2012)Google Scholar
  54. 54.
    Vedantham, H.K., Koopmans, L.V.E., de Bruyn, A.G., et al.: Chromatic effects in the 21 cm global signal from the cosmic dawn. Mon. Not. R. Astron. Soc. 437, 1056–1069 (2014).  https://doi.org/10.1093/mnras/stt1878 ADSCrossRefGoogle Scholar
  55. 55.
    Vedantham, H.K., Koopmans, L.V.E., de Bruyn, A.g., et al.: Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz. Mon. Not. R. Astron. Soc. 450, 2291–2305 (2015).  https://doi.org/10.1093/mnras/stv746 ADSCrossRefGoogle Scholar
  56. 56.
    Voytek, T.C., Natarajan, A., Jáuregui García, J.M., Peterson, J.B., López-Cruz, O.: Probing the dark Ages at z 20: the SCI-HI 21 cm all-sky spectrum experiment. The Astrophysical Journal Letters 782, L9 (2014).  https://doi.org/10.1088/2041-8205/782/1/L9 ADSCrossRefGoogle Scholar
  57. 57.
    Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997).  https://doi.org/10.1021/jp970984n CrossRefGoogle Scholar
  58. 58.
    Weiner, M.M.: Monopole antennas. dekker (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Raman Research InstituteSadashivanagarIndia
  2. 2.Joint Astronomy ProgrammeIndian Institute of ScienceBangaloreIndia

Personalised recommendations