Advertisement

Experimental Astronomy

, Volume 45, Issue 2, pp 231–253 | Cite as

Antenna design and implementation for the future space Ultra-Long wavelength radio telescope

  • Linjie Chen
  • Amin Aminaei
  • Leonid I. Gurvits
  • Marc Klein Wolt
  • Hamid Reza Pourshaghaghi
  • Yihua Yan
  • Heino Falcke
Original Article

Abstract

In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 − 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.

Keywords

Ultra-long wavelength Radio astronomy Space-based radio telescope 

Notes

Acknowledgements

The authors would like to thank Prof. Maohai Huang from NAOC,CAS, Mr. Michel Arts and Menno Norden from ASTRON for the help and support in this work; we are grateful to the anonymous referees for many valuable comments and suggestions. The authors are grateful to ASTRON, the Netherlands, for offering access to the laboratory facilities and equipment.

References

  1. 1.
    Agilent Technologies: Noise Figure Measurement Accuracy The Y-Factor Method. Application Note, 57-2, see https://paginas.fe.up.pt/~hmiranda/st2/an57-2.pdf
  2. 2.
    Alexander, J.K., Kaiser, M.L., Novaco, J.C., Grena, F.R., Weber, R.R.: Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite. Astron. Astrophys. 40(1975), 365–371 (2011)ADSGoogle Scholar
  3. 3.
    Arts, M., van der Wal, E., Boonstra, A.-J.: Antenna concepts for a space-based low-frequency radio telescope. In: ESA Antenna Workshop on Antennas for Space Applications. Noordwijk, pp. 5–8 (2010)Google Scholar
  4. 4.
    Bale, S.D.: The electric antennas for the STEREO/WAVES experiment. Space Sci. Rev. 136(1–4), 529–547 (2007)ADSGoogle Scholar
  5. 5.
    Basart, J.P., Burns, J.O., Dennison, B.K., Weiler, K.W., Kassim, N.E., Castill, S.P., McCune, B.M.: Directions for space-based low frequency radio astronomy 1. System considerations. Radio Sci. 32(1), 251–63 (1997)CrossRefGoogle Scholar
  6. 6.
    Bely, P.Y., Laurance, R.J., Volonte, S., Ambrosini, R.R., Ardenne, A., Barrow, C.H., Bougeret, J.L., Marcaide, J.M., Woan, G.: Very low frequency array on the lunar far side. ESA report SCI (97)2, European Space Agency (1997)Google Scholar
  7. 7.
    Bergman, J.E.S., Blott, R.J., Forbes, A.B., Humphreys, D.A., Robinson, D.W., Stavrinidis, C.: FIRST explorer an innovative low-cost passive formation-flying system. In: CEAS 2009 C European air and space conference, Manchester (2009)Google Scholar
  8. 8.
    Blott, R.J., Baan, I.W.A., Boonstra, A.-J., Bergman, J., Robinson, D., Liddle, D., Navarathinam, N., Eves, S., Bridges, C., Gao, S., Bentum, M., Forbes, A., Humphreys, D., Harroch, C.-G.: Space-based ultra-long wavelength radio observatory (low cost) - SURO-LC. In: European planetary science congress 2013, held 8-13 September in London, UK. Online at: http://meetings.copernicus.org/epsc2013, id.EPSC2013-279 (2013)
  9. 9.
    Boonstra, A.-J. et al.: Discovering the sky at the longest wavelength (DSL). In: 2016 IEEE aerospace conference, yellowstone conference center, big sky, montana (2016)Google Scholar
  10. 10.
    Burns, J.O., Lazio, J., Bale, S., Bowman, J., Bradley, R., Carilli, C., Furlanetto, S., Harker, G., Loeb, A., Pritchard, J.: Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE). Adv. Space Res. 49(3), 433–450 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, L., Zhang, M., Yan, Y., Huang, M.: The concept of space ultra long wavelength array. General assembly and scientific symposium (URSI GASS), 2014 XXXIth URSI. available: IEEE  https://doi.org/10.1109/URSIGASS.2014.6929990(2014)
  12. 12.
    Chen, L., Aminaei, A., Falcke, H., Gurvits, L.: Optimized estimation of the direction of arrival with single Tripole Antenna. In: Proceeding of 2010 Loughborough Antennas&Propagation conference, 93-96, Loughborough (2010)Google Scholar
  13. 13.
    Chen, L.: Research on moon-based ultra long wavelength radio interferometer. Doctoral Thesis, University of Chinese Academy of Science, Beijing (2011)Google Scholar
  14. 14.
    Compton, R.T. Jr: The tripole antenna: an adaptive array with full polarization flexibility. IEEE Trans. Antennas Propag. AP-29(6), 944–952 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    Diane, F.M.: Basics of Radio Astronomy for the Goldstone-Apple Valley Radio Telescope, National Aeronautics and Space Administration Jet Propulsion Laboratory (1997)Google Scholar
  16. 16.
    Eisenberg, G.Z.: Short-Wave Antennas. Svyazizdat, Moscow (1962)Google Scholar
  17. 17.
    Ellingson, S.W.: Antennas for the next generation of low frequency radio telescopes. IEEE Trans. Antennas Propag. 53(8), 2480–2489 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Ellingson, S.W., Clarke, T.E., Cohen, A., Craig, J., Kassim, N.E., Pihlstrom, Y., Rickard, L.J., Taylor, G.B.: The long wavelength array. Proc. IEEE 97(8), 1421–1430 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Engelen, S., Verhoeven, C.J.M., Bentum, M.J.: OLFAR, A Radio Telescope Based on Nano-Satellites in Moon Orbit.. In: 24th Anuual AIAA/USU conference on small satellites, Logan UT (2010)Google Scholar
  20. 20.
    Eriksson, S.: Study of tripole antenna arrays for space radio research. Master Thesis. Department of Astronomy and Space Physics, Uppsala University, Uppsala, Sweden, UPTEC F03 062 (2003)Google Scholar
  21. 21.
    Frickey, D.: Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans. Microwave Theory Tech. 42, 205–211 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    Herman, J.R., Caruso, J.A.: Radio astronomy explorer (RAE)-i. Observations of terrestrial radio noise. Planet. Space Sci. 21, 443–461 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    Hicks, B.C., et al.: A wide-band, active antenna system for long wavelength radio astronomy. Publ.Astron.Soc.Pac. 124. 1090 arXiv:1210.0506 [astro-ph.IM] (2012)
  24. 24.
    Jester, S., Fackle, H.: Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. 53, 1–26 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Kaiser, M.L., Desch, M.D., Bougeret, J.L., Manning, R., Meetre, C.A.: WIND/WAVES Observations of man-made radio transmissions. Geophys. Res. Lett. 23(10), 1287–1290 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Krömer, O. et al.: New Antenna for radio detection of UHECR. In: Proceedings of the 31st international cosmic ray conference, Łódź (2009)Google Scholar
  27. 27.
    Mimoun, D. et al.: Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. 33, 529–585 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Rajan, R.T., Boonstra, A.-J., Bentum, M., Klein-Wolt, M., Belien, F., Arts, M., Saks, N., Veen, A.-J.: Space-based aperture array For ultra-long wavelength radio astronomy. Exp. Astron. 41, 271C306 (2016)CrossRefGoogle Scholar
  29. 29.
    Rhode, U.L., Whitaker, J.C.: Communications receivers: DSP, software radios, and design, 3rd edn. McGraw-Hill, New York (2001)Google Scholar
  30. 30.
    Rucker, H.O., Macher, W., Manning, R., Ladreiter, H.P.: Cassini model rheometry. Radio Sci. 31(6), 1299–1311 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Saks, N., Boonstra, A.J., Rajan, R.T., Bentum, M.J., Belien, F., van’t Klooster, K.: DARIS, A fleet of passive formation flying small satellites for low frequency radio astronomy. In: The small satellites systems & services symposium, Madeira (2010)Google Scholar
  32. 32.
    Shen, T.: Active antenna theory and application. Xi’an Jiaotong University Press. ISBN: 9787560504087 / 7560504086 (1991)Google Scholar
  33. 33.
    Simpson, G., Ballo, D., Dunsmore, J., Ganwani, A.: A new noise parameter measurement method results in more than 100 speed improvement and enhanced measurement accuracy. In: Proceeding of the 72nd ARFTG microwave measurement conference (2008)Google Scholar
  34. 34.
    Tan, G.H., Rohner, C.: Low-frequency array active-antenna system. Proc. SPIE. 4015, 446–457 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Tingay, S.J. et al.: The Murchison Widefield array: the square Kilometre array Precursor at low radio frequencies. Instrumentation and Methods for Astrophysics. available: arXiv:1206.6945 (2012)
  36. 36.
    van Haarlem, M.P. et al.: LOFAR: The LOW-frequency ARray. Astron. Astrophys. 2, 556 (2013)Google Scholar
  37. 37.
    Wieczorek, M.: A mission to the farside of the moon. A proposal in response to the call for a medium-sized mission opportunity in ESAs science programme for a launch in 2025 (M4), published online, http://www.ipgp.fr/~wieczor/MyPapers/Farside-M4-FINAL.pdf
  38. 38.
    Klein-Wolt, M., Aminaei, A., Zarka, P., Schrader, J.R., Boonstra, A.J., Falcke, H.: Radio astronomy with the Lunar Lander: opening up the last unexplored frequency regime. Planet. Space Sci. 74, 167–178 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Zarka, P., Bougeret, J.L., Briand, C., Cecconi, B., Falck, H., Girard, J., Grießeier, J.M., Hess, S., Wolt, M.K., Konovalenko, A., Lamya, L., Mimoun, D., Aminaei, A.: Planetary and exoplanetary low frequency radio observations from the Moon. Planetary and Space Science, in the special issue SPME 74(1), 156–166 (2012).  https://doi.org/10.1016/j.pss.2012.08.004 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Solar ActivityNational Astronomical Observatories of Chinese Academy of SciencesChaoyang DistrictChina
  2. 2.Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle PhysicsRadboud UniversityNijmegenThe Netherlands
  3. 3.Joint Institute for VLBI ERICDwingelooThe Netherlands
  4. 4.Department of PhysicsUniversity of OxfordOxfordUK
  5. 5.Department of Astrodynamics and Space MissionsDelft University of TechnologyDelftThe Netherlands
  6. 6.Electronic Systems Group, Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  7. 7.Netherlands Institute for Radio Astronomy (ASTRON)DwingelooThe Netherlands

Personalised recommendations