The contribution of the ARIEL space mission to the study of planetary formation

Abstract

The study of extrasolar planets and of the Solar System provides complementary pieces of the mosaic represented by the process of planetary formation. Exoplanets are essential to fully grasp the huge diversity of outcomes that planetary formation and the subsequent evolution of the planetary systems can produce. The orbital and basic physical data we currently possess for the bulk of the exoplanetary population, however, do not provide enough information to break the intrinsic degeneracy of their histories, as different evolutionary tracks can result in the same final configurations. The lessons learned from the Solar System indicate us that the solution to this problem lies in the information contained in the composition of planets. The goal of the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL), one of the three candidates as ESA M4 space mission, is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk composition across all main cosmochemical elements. In this work we will review the most outstanding open questions concerning the way planets form and the mechanisms that contribute to create habitable environments that the compositional information gathered by ARIEL will allow to tackle.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Fressin, F., et al.: The false positive rate of Kepler and the occurrence of planets. ApJ. 766, 81 (2013)

    ADS  Article  Google Scholar 

  2. 2.

    Spiegel, D.S., Forney, J.S., Sotin, C.: Structure of exoplanets. PNAS. 111, 12622–12627 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    Baines, K. H., et al.: Experiencing Venus: clues to the origin, evolution, and chemistry of terrestrial planets via in-situ exploration of our sister world. In: Esposito, L. W., Stofan, E. R., Cravens, T. E. (eds.) Exploring Venus as a Terrestrial Planet. Geophys. Monogr. 176, pp. 171–189. American Geophysical Union, Washington, D.C. (2007). https://doi.org/10.1029/176GM11

  4. 4.

    De Bergh, et al.: Deuterium on Venus - observations from Earth. Science. 251, 547–549 (1991)

    ADS  Article  Google Scholar 

  5. 5.

    Donahue, T.M., et al.: Venus was wet - a measurement of the ratio of deuterium to hydrogen. Science. 216, 630–633 (1982)

    ADS  Article  Google Scholar 

  6. 6.

    Hunten, D.M.: Venus: lessons for Earth. Adv. Space Res. 12(9), 35–41 (1992)

    ADS  Article  Google Scholar 

  7. 7.

    Fedorova, A., et al.: HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer on board Venus express. J. Geophys. Res. 113, E00B22 (2008). https://doi.org/10.1029/2008JE003146

    Article  Google Scholar 

  8. 8.

    Gillmann, C., et al.: A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009)

    ADS  Article  Google Scholar 

  9. 9.

    Kopparapu, R.K., et al.: Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    Tinetti, G., et al.: ARIEL assessment study report ESA/SCI(2017), 2, (2017a). http://sci.esa.int/cosmic-vision/59109-ariel-assessment-study-report-yellow-book/#

  11. 11.

    Tinetti G., et al.: Exp. Astron. submitted (2017b)

  12. 12.

    Tinetti G., et al.: ARIEL – the atmospheric remote-sensing infrared exoplanet large-survey, proposal submitted in response to ESA’s call for the M4 mission of the cosmic vision 2015–2025. (2015). http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=56561

  13. 13.

    Morbidelli, A., Lunine, J.I., O’Brien, D.P., Raymond, S.N., Walsh, K.J.: Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Raymond, S.N., Kokubo, E., Morbidelli, A., Morishima, R., Walsh, K.J.: Terrestrial planet formation at home and abroad. In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.) Protostars and Planets VI, pp. 595–618. University of Arizona Press, Tucson (2014)

    Google Scholar 

  15. 15.

    D’Angelo, G., Durisen, R.H., Lissauer, J.J.: Giant planet formation, pp. 526. In: Seager, S. (ed.) Exoplanets, pp. 319–346. University of Arizona Press, Tucson (2010)

  16. 16.

    Helled, R., Bodenheimer, P., Podolak, M., Boley, A., Meru, F., Nayakshin, S., Fortney, J.J., Mayer, L., Alibert, Y., Boss, A.P.: Giant planet formation, evolution, and internal structure. In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.) Protostars and Planets VI, pp. 643–665. University of Arizona Press, Tucson (2014)

  17. 17.

    Morbidelli, A., Raymond, S.N.: Challenges in planet formation. J. Geophys. Res. Planets. 121, 1962–1980 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    Massol, H., et al.: Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    Madhusudhan, N., Agundez, M., Moses, J.I., Yongyun, H.: Exoplanetary atmospheres– chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    Meyer, M.R.: Circumstellar disk evolution: constraining theories of planet formation. Proc. Int. Astron. Union. 4, 111–122 (2008)

    Article  Google Scholar 

  21. 21.

    Fedele, D., van den Ancker, M.E., Henning, T., Jayawardhana, R., Oliveira, J.M.: Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, A72 (2010)

    Article  Google Scholar 

  22. 22.

    Fegley B., Schaefer L.: Cosmochemisty. In: Goswami, A., Reddy, B. (eds.) Principles and Perspectives in Cosmochemistry. Astrophysics and Space Science Proceedings, pp. 347–378, Springer-Verlag, Berlin, Heidelberg, (2010). https://doi.org/10.1007/978-3-642-10352-0_7

  23. 23.

    Zingales, T., et al.: Technical note ARIEL-UCL-SCI-TN-001 delivered to the European Space Agency in support to the ARIEL assessment study report (ESA document: ESA/SCI(2017) 2). (2017a). Document available at: https://arielspacemission.files.wordpress.com/2017/05/ariel-ice-gs-tn-001_arielplanning-i1-01.pdf. Accessed 27 June 2017

  24. 24.

    Zingales, T., Tinetti, G., Pillitteri, I., Leconte, J., Micela, G., Sarkar, S.: The ARIEL mission reference sample. Exp. Astron. (2018). https://doi.org/10.1007/s10686-018-9572-7

  25. 25.

    Guillot, T., Gladman, B.: Late planetesimal delivery and the composition of giant planets. In: Disks, planetesimals, and planets, ASP conference proceedings, vol. 219, Astronomical Society of the Pacific, p. 475. (2000)

  26. 26.

    Rocchetto, M., et al.: Exploring biases of atmospheric retrievals in simulated JWST transmission spectra of hot Jupiters. ApJ. 833, 120–133 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    Barstow J. K., et al.: ARIEL-UCL-SCI-TN-002 technical note for the ARIEL assessment study report ESA/SCI(2017) 2. (2017)

    Google Scholar 

  28. 28.

    Chambers, J.E.: Oligarchic growth with migration and fragmentation. Icarus. 198, 256–273 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    Baruteau, C., Bai, X., Mordasini, C., Molliere, P.: Formation, orbital and internal evolution of young planetary systems. Space Sci. Rev. 205, 77–124 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    Rasio, F.A., Ford, E.B.: Dynamical instabilities and the formation of extrasolar planetary systems. Science. 274, 954–956 (1996)

    ADS  Article  Google Scholar 

  31. 31.

    Weidenschilling, S.J., Marzari, F.: Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature. 384, 619–621 (1996)

    ADS  Article  Google Scholar 

  32. 32.

    Taylor, F.W., et al.: The composition of the atmosphere of Jupiter. In: Bagenal, F., Dowling, T. E., McKinnon, W. B. (eds.) Jupiter. The Planet, Satellites and Magnetosphere, p. 59–78. Cambridge University Press, Cambridge, (2004)

  33. 33.

    Turrini, D., Nelson, R.P., Barbieri, M.: The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Exp. Astron. 40, 501–522 (2015)

    ADS  Article  Google Scholar 

  34. 34.

    Limbach, M.A., Turner, E.L.: Exoplanet orbital eccentricity: multiplicity relation and the solar system. PNAS. 112, 20–24 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    Zinzi, A., Turrini, D.: Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories. A&A. 605, L4 (2017)

    ADS  Article  Google Scholar 

  36. 36.

    Espinoza, N., et al.: Metal enrichment leads to low atmospheric C/O ratios in transiting giant exoplanets. Submitted to ApJL, eprint arXiv:1611.08616 (2016)

  37. 37.

    Miguel, Y., Kaltenegger, L., Fegley, B., Schaefer, L.: Compositions of hot super-earth atmospheres: exploring Kepler candidates. ApJL. 742, L19 (2011)

    ADS  Article  Google Scholar 

  38. 38.

    Panić, O., Min, M.: Effects of disc mid-plane evolution on CO snowline location. MNRAS. 467, 1175–1185 (2017)

    ADS  Google Scholar 

  39. 39.

    Guillot, T., Hueso, R.: The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. MNRAS. 367, L47–L51 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    Atreya, S., et al.: The origin and evolution of Saturn, with exoplanet perspective. In: Baines, K. H., Flasar, F. M., Krupp, N., Stallard, T. S. (eds.) Saturn in the 21 Century. Cambridge University Press, Cambridge (2016)

  41. 41.

    Hersant, F., Gautier, D., Lunine, J.I.: Enrichment in volatiles in the giant planets of the solar system. PSS. 52, 623–641 (2004)

    Google Scholar 

  42. 42.

    Miguel, Y., Guillot, T., Fayon, L.: Jupiter internal structure: the effect of different equations of state. A&A. 596, A114 (2016)

    ADS  Article  Google Scholar 

  43. 43.

    Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H.: The multifaceted planetesimal formation process. In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.) Protostars and Planets VI, pp. 547–570. University of Arizona Press, Tucson (2014)

  44. 44.

    Scott, E.R.D.: Chondrites and the protoplanetary disk. Annu. Rev. Earth Planet. Sci. 35, 577–620 (2007)

    ADS  Article  Google Scholar 

  45. 45.

    Brasser, R.: The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013)

    ADS  Article  Google Scholar 

  46. 46.

    Raymond, S.N., Izidoro, A.: Origin of water in the inner solar system: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus. 297, 134–148 (2017)

    ADS  Article  Google Scholar 

  47. 47.

    Turrini, D., Svetsov, V.: The formation of jupiter, the jovian early bombardment and the delivery of water to the asteroid belt: the case of (4) Vesta. Life. 4, 4–34 (2014)

    ADS  Article  Google Scholar 

  48. 48.

    Drake, M.J.: Origin of water in the terrestrial planets. MAPS. 40, 519–527 (2005)

    ADS  Google Scholar 

  49. 49.

    Quintana, E.V., Lissauer, J.J.: The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets. ApJ. 786, 33 (2014)

    ADS  Article  Google Scholar 

  50. 50.

    Gillon, M., et al.: Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature. 542, 456–460 (2017)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

D. Turrini and P. Wolkenberg gratefully acknowledge the support of the European Space Agency (ESA) during their participation to ARIEL’s ESA Science Study Team. D. Turrini has been supported by the Italian Space Agency (ASI) under the contract 2015-038-R.0. The work of O. Panić has been supported through a Royal Society Dorothy Hodgkin Fellowship. A. Piccialli has received funding from the European Union’s Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Turrini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turrini, D., Miguel, Y., Zingales, T. et al. The contribution of the ARIEL space mission to the study of planetary formation. Exp Astron 46, 45–65 (2018). https://doi.org/10.1007/s10686-017-9570-1

Download citation

Keywords

  • Atmospheric remote-sensing infrared exoplanet large-survey
  • ARIEL
  • Space missions
  • Exoplanets
  • Planetary formation
  • Astrochemistry