Experimental Astronomy

, Volume 46, Issue 1, pp 45–65 | Cite as

The contribution of the ARIEL space mission to the study of planetary formation

  • D. TurriniEmail author
  • Y. Miguel
  • T. Zingales
  • A. Piccialli
  • R. Helled
  • A. Vazan
  • F. Oliva
  • G. Sindoni
  • O. Panić
  • J. Leconte
  • M. Min
  • S. Pirani
  • F. Selsis
  • V. Coudé du Foresto
  • A. Mura
  • P. Wolkenberg
Original Article


The study of extrasolar planets and of the Solar System provides complementary pieces of the mosaic represented by the process of planetary formation. Exoplanets are essential to fully grasp the huge diversity of outcomes that planetary formation and the subsequent evolution of the planetary systems can produce. The orbital and basic physical data we currently possess for the bulk of the exoplanetary population, however, do not provide enough information to break the intrinsic degeneracy of their histories, as different evolutionary tracks can result in the same final configurations. The lessons learned from the Solar System indicate us that the solution to this problem lies in the information contained in the composition of planets. The goal of the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL), one of the three candidates as ESA M4 space mission, is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk composition across all main cosmochemical elements. In this work we will review the most outstanding open questions concerning the way planets form and the mechanisms that contribute to create habitable environments that the compositional information gathered by ARIEL will allow to tackle.


Atmospheric remote-sensing infrared exoplanet large-survey ARIEL Space missions Exoplanets Planetary formation Astrochemistry 



D. Turrini and P. Wolkenberg gratefully acknowledge the support of the European Space Agency (ESA) during their participation to ARIEL’s ESA Science Study Team. D. Turrini has been supported by the Italian Space Agency (ASI) under the contract 2015-038-R.0. The work of O. Panić has been supported through a Royal Society Dorothy Hodgkin Fellowship. A. Piccialli has received funding from the European Union’s Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.


  1. 1.
    Fressin, F., et al.: The false positive rate of Kepler and the occurrence of planets. ApJ. 766, 81 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Spiegel, D.S., Forney, J.S., Sotin, C.: Structure of exoplanets. PNAS. 111, 12622–12627 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Baines, K. H., et al.: Experiencing Venus: clues to the origin, evolution, and chemistry of terrestrial planets via in-situ exploration of our sister world. In: Esposito, L. W., Stofan, E. R., Cravens, T. E. (eds.) Exploring Venus as a Terrestrial Planet. Geophys. Monogr. 176, pp. 171–189. American Geophysical Union, Washington, D.C. (2007).
  4. 4.
    De Bergh, et al.: Deuterium on Venus - observations from Earth. Science. 251, 547–549 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Donahue, T.M., et al.: Venus was wet - a measurement of the ratio of deuterium to hydrogen. Science. 216, 630–633 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Hunten, D.M.: Venus: lessons for Earth. Adv. Space Res. 12(9), 35–41 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Fedorova, A., et al.: HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer on board Venus express. J. Geophys. Res. 113, E00B22 (2008). CrossRefGoogle Scholar
  8. 8.
    Gillmann, C., et al.: A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Kopparapu, R.K., et al.: Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Tinetti, G., et al.: ARIEL assessment study report ESA/SCI(2017), 2, (2017a). Scholar
  11. 11.
    Tinetti G., et al.: Exp. Astron. submitted (2017b)Google Scholar
  12. 12.
    Tinetti G., et al.: ARIEL – the atmospheric remote-sensing infrared exoplanet large-survey, proposal submitted in response to ESA’s call for the M4 mission of the cosmic vision 2015–2025. (2015).
  13. 13.
    Morbidelli, A., Lunine, J.I., O’Brien, D.P., Raymond, S.N., Walsh, K.J.: Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Raymond, S.N., Kokubo, E., Morbidelli, A., Morishima, R., Walsh, K.J.: Terrestrial planet formation at home and abroad. In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.) Protostars and Planets VI, pp. 595–618. University of Arizona Press, Tucson (2014)Google Scholar
  15. 15.
    D’Angelo, G., Durisen, R.H., Lissauer, J.J.: Giant planet formation, pp. 526. In: Seager, S. (ed.) Exoplanets, pp. 319–346. University of Arizona Press, Tucson (2010)Google Scholar
  16. 16.
    Helled, R., Bodenheimer, P., Podolak, M., Boley, A., Meru, F., Nayakshin, S., Fortney, J.J., Mayer, L., Alibert, Y., Boss, A.P.: Giant planet formation, evolution, and internal structure. In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.) Protostars and Planets VI, pp. 643–665. University of Arizona Press, Tucson (2014)Google Scholar
  17. 17.
    Morbidelli, A., Raymond, S.N.: Challenges in planet formation. J. Geophys. Res. Planets. 121, 1962–1980 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Massol, H., et al.: Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Madhusudhan, N., Agundez, M., Moses, J.I., Yongyun, H.: Exoplanetary atmospheres– chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Meyer, M.R.: Circumstellar disk evolution: constraining theories of planet formation. Proc. Int. Astron. Union. 4, 111–122 (2008)CrossRefGoogle Scholar
  21. 21.
    Fedele, D., van den Ancker, M.E., Henning, T., Jayawardhana, R., Oliveira, J.M.: Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, A72 (2010)CrossRefGoogle Scholar
  22. 22.
    Fegley B., Schaefer L.: Cosmochemisty. In: Goswami, A., Reddy, B. (eds.) Principles and Perspectives in Cosmochemistry. Astrophysics and Space Science Proceedings, pp. 347–378, Springer-Verlag, Berlin, Heidelberg, (2010).
  23. 23.
    Zingales, T., et al.: Technical note ARIEL-UCL-SCI-TN-001 delivered to the European Space Agency in support to the ARIEL assessment study report (ESA document: ESA/SCI(2017) 2). (2017a). Document available at: Accessed 27 June 2017
  24. 24.
    Zingales, T., Tinetti, G., Pillitteri, I., Leconte, J., Micela, G., Sarkar, S.: The ARIEL mission reference sample. Exp. Astron. (2018).
  25. 25.
    Guillot, T., Gladman, B.: Late planetesimal delivery and the composition of giant planets. In: Disks, planetesimals, and planets, ASP conference proceedings, vol. 219, Astronomical Society of the Pacific, p. 475. (2000)Google Scholar
  26. 26.
    Rocchetto, M., et al.: Exploring biases of atmospheric retrievals in simulated JWST transmission spectra of hot Jupiters. ApJ. 833, 120–133 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Barstow J. K., et al.: ARIEL-UCL-SCI-TN-002 technical note for the ARIEL assessment study report ESA/SCI(2017) 2. (2017)Google Scholar
  28. 28.
    Chambers, J.E.: Oligarchic growth with migration and fragmentation. Icarus. 198, 256–273 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Baruteau, C., Bai, X., Mordasini, C., Molliere, P.: Formation, orbital and internal evolution of young planetary systems. Space Sci. Rev. 205, 77–124 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Rasio, F.A., Ford, E.B.: Dynamical instabilities and the formation of extrasolar planetary systems. Science. 274, 954–956 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Weidenschilling, S.J., Marzari, F.: Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature. 384, 619–621 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    Taylor, F.W., et al.: The composition of the atmosphere of Jupiter. In: Bagenal, F., Dowling, T. E., McKinnon, W. B. (eds.) Jupiter. The Planet, Satellites and Magnetosphere, p. 59–78. Cambridge University Press, Cambridge, (2004)Google Scholar
  33. 33.
    Turrini, D., Nelson, R.P., Barbieri, M.: The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Exp. Astron. 40, 501–522 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Limbach, M.A., Turner, E.L.: Exoplanet orbital eccentricity: multiplicity relation and the solar system. PNAS. 112, 20–24 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Zinzi, A., Turrini, D.: Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories. A&A. 605, L4 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Espinoza, N., et al.: Metal enrichment leads to low atmospheric C/O ratios in transiting giant exoplanets. Submitted to ApJL, eprint arXiv:1611.08616 (2016)Google Scholar
  37. 37.
    Miguel, Y., Kaltenegger, L., Fegley, B., Schaefer, L.: Compositions of hot super-earth atmospheres: exploring Kepler candidates. ApJL. 742, L19 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Panić, O., Min, M.: Effects of disc mid-plane evolution on CO snowline location. MNRAS. 467, 1175–1185 (2017)ADSGoogle Scholar
  39. 39.
    Guillot, T., Hueso, R.: The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. MNRAS. 367, L47–L51 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Atreya, S., et al.: The origin and evolution of Saturn, with exoplanet perspective. In: Baines, K. H., Flasar, F. M., Krupp, N., Stallard, T. S. (eds.) Saturn in the 21 Century. Cambridge University Press, Cambridge (2016)Google Scholar
  41. 41.
    Hersant, F., Gautier, D., Lunine, J.I.: Enrichment in volatiles in the giant planets of the solar system. PSS. 52, 623–641 (2004)Google Scholar
  42. 42.
    Miguel, Y., Guillot, T., Fayon, L.: Jupiter internal structure: the effect of different equations of state. A&A. 596, A114 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H.: The multifaceted planetesimal formation process. In: Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.) Protostars and Planets VI, pp. 547–570. University of Arizona Press, Tucson (2014)Google Scholar
  44. 44.
    Scott, E.R.D.: Chondrites and the protoplanetary disk. Annu. Rev. Earth Planet. Sci. 35, 577–620 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Brasser, R.: The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Raymond, S.N., Izidoro, A.: Origin of water in the inner solar system: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus. 297, 134–148 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    Turrini, D., Svetsov, V.: The formation of jupiter, the jovian early bombardment and the delivery of water to the asteroid belt: the case of (4) Vesta. Life. 4, 4–34 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Drake, M.J.: Origin of water in the terrestrial planets. MAPS. 40, 519–527 (2005)ADSGoogle Scholar
  49. 49.
    Quintana, E.V., Lissauer, J.J.: The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets. ApJ. 786, 33 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Gillon, M., et al.: Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature. 542, 456–460 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • D. Turrini
    • 1
    • 2
    Email author
  • Y. Miguel
    • 3
  • T. Zingales
    • 4
    • 5
  • A. Piccialli
    • 6
  • R. Helled
    • 7
  • A. Vazan
    • 8
  • F. Oliva
    • 1
  • G. Sindoni
    • 1
  • O. Panić
    • 9
  • J. Leconte
    • 10
  • M. Min
    • 8
  • S. Pirani
    • 11
  • F. Selsis
    • 10
  • V. Coudé du Foresto
    • 12
  • A. Mura
    • 1
  • P. Wolkenberg
    • 1
    • 13
  1. 1.Istituto di Astrofisica e Planetologia Spaziali INAF-IAPSRomeItaly
  2. 2.Departamento de FisicaUniversidad de AtacamaCopiapóChile
  3. 3.Leiden Observatory, Leiden UniversityLeidenThe Netherlands
  4. 4.University College LondonLondonUK
  5. 5.INAF Osservatorio Astronomico di PalermoPalermoItaly
  6. 6.Planetary AeronomyBelgian Institute for Space AeronomyBrusselsBelgium
  7. 7.Institute for Computational Science, Center for Theoretical Astrophysics & CosmologyUniversity of ZurichZurichSwitzerland
  8. 8.Anton Pannekoek Institute for AstronomyUniversity of AmsterdamAmsterdamNetherlands
  9. 9.School of Physics and AstronomyUniversity of LeedsLeedsUK
  10. 10.Laboratoire d’Astrophysique de BordeauxBordeauxFrance
  11. 11.Lund Observatory, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden
  12. 12.Observatoire Paris - Meudon, LESIAMeudon CedexFrance
  13. 13.CBK-PAN, Centrum Badań Kosmicznych Polskiej Akademii NaukWarsawPoland

Personalised recommendations