Skip to main content
Log in

Improvements on Fresnel arrays for high contrast imaging

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman-α line (λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andersen, G.: Membrane photon sieve telescopes. Appl. Opt. 49(33), 6391–6394 (2010)

    Article  ADS  Google Scholar 

  2. Attwood, D.: Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  3. Cash, W.: Analytic modeling of starshades. ApJ 738, 76 (2011). https://doi.org/10.1088/0004-637X/738/1/76

    Article  ADS  Google Scholar 

  4. Faklis, D., Morris, G.M.: Broadband imaging with holographic lenses. Opt. Eng. 28(6), 286,592–286,592 (1989). https://doi.org/10.1117/12.7977006

    Article  Google Scholar 

  5. Fresnel, A.J.: Mémoire sur la diffraction de la lumière. pp 339–475. http://www.academie-sciences.fr/pdf/dossiers/Fresnel/Fresnel_pdf/Mem1818_p339.pdf (1818)

  6. Gómez de Castro, AI: The Fresnel space imager as a disk evolution watcher. Exp. Astron. 30, 205–216 (2011). https://doi.org/10.1007/s10686-011-9223-8

    Article  ADS  Google Scholar 

  7. Guyon, O., Pluzhnik, E.A., Galicher, R., Martinache, F., Ridgway, S.T., Woodruff, R.A.: Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle. Astrophys. J. 622, 744–758 (2005). https://doi.org/10.1086/427771, astro-ph/0412179

    Article  ADS  Google Scholar 

  8. Hinglais, E.: A space Fresnel imager concept assessment study led by CNES for astrophysical applications. Exp. Astron. 30, 85–110 (2011). https://doi.org/10.1007/s10686-011-9218-5

    Article  ADS  Google Scholar 

  9. Koechlin, L.: The Fresnel Diffractive Imager for UV astrophysics: proposed test mission in space. In: 40th COSPAR Scientific Assembly, COSPAR Meeting, vol 40 (2014)

  10. Koechlin, L., Serre, D., Duchon, P.: High resolution imaging with fresnel interferometric arrays: suitability for exoplanet detection. A&A 443 (2), 709–720 (2005). https://doi.org/10.1051/0004-6361:20052880

    Article  ADS  Google Scholar 

  11. Koechlin, L., Rivet, J.P., Deba, P., Serre, D., Raksasataya, T., Gili, R., David, J.: First high dynamic range and high resolution images of the sky obtained with a diffractive fresnel array telescope. Experimental Astronomy 33(1), 129–140 (2011). https://doi.org/10.1007/s10686-011-9277-7

    Article  ADS  Google Scholar 

  12. Myers, O.E.: Studies of Transmission Zone Plates. Am. J. Phys. 19, 359–365 (1951). https://doi.org/10.1119/1.1932827

    Article  ADS  Google Scholar 

  13. Nisenson, P., Papaliolios, C.: Detection of earth-like planets using apodized telescopes. Astrophysical J. Lett. 548(2), L201 (2001). http://stacks.iop.org/1538-4357/548/i=2/a=L201

    Article  ADS  Google Scholar 

  14. Raksasataya, T., Deba, P., Rivet, J.P., Gili, R., Serre, D., Koechlin, L.: Fresnel diffractive imager: instrument for space mission in the visible and uv. In: Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray, Proc. SPIE, vol 7732. https://doi.org/10.1117/12.857213 (2010)

  15. Raksasataya, T., Gomez de Castro, A.I., Koechlin, L., Rivet, J.P.: A space fresnel imager for ultra-violet astrophysics: example on accretion disks. Exp. Astron. 30(2), 183 (2011). https://doi.org/10.1007/s10686-011-9221-x

    Article  ADS  Google Scholar 

  16. Roux, W., Koechlin, L.: Diffractive telescope for protoplanetary disks study in UV. In: Martins, F., Boissier, S., Buat, V., Cambresý, L., Petit, P. (eds.) SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp 289–292. http://adsabs.harvard.edu/abs/2015sf2a.conf..289R (2015)

  17. Schupmann, L.: Die Medial-Fernrohre - Eine neue Konstruktion für große astronomische Instrumente. Teubner-Verlag, Berlin (1899)

    MATH  Google Scholar 

  18. Serre, D.: The Fresnel imager: instrument numerical model. Exp. Astron. 30, 111–121 (2011). https://doi.org/10.1007/s10686-010-9200-7

    Article  ADS  Google Scholar 

  19. Soret, J.L.: Sur les phénomènes de diffraction produits par les réseaux circulaires. Arch. Sci. Phys. Nat. 52, 320–337 (1875)

    Google Scholar 

  20. Vanderbei, R.J., Spergel, D.N., Kasdin, N.J.: Spiderweb masks for high-contrast imaging. Astrophys. J. 590(1), 593 (2003). http://stacks.iop.org/0004-637X/590/i = 1/a = 593

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roux Wilhem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilhem, R., Laurent, K. Improvements on Fresnel arrays for high contrast imaging. Exp Astron 45, 21–40 (2018). https://doi.org/10.1007/s10686-017-9568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-017-9568-8

Keywords

Navigation