Skip to main content

Advertisement

Log in

Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4–150 keV), and a gamma-ray spectrometer (GRM; 15–5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://geant4.cern.ch/

  2. We recall that the cutPL function is a subset of the Band function, obtained in the limit β.

References

  1. Amati, L., Frontera, F., Tavani, M., et al.: Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81 (2002)

    Article  ADS  Google Scholar 

  2. Band, D., Matteson, J., Ford, L., et al.: BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys. J. 413, 281 (1993)

    Article  ADS  Google Scholar 

  3. Barthelmy, S.D., Chincarini, G., Burrows, D.N., et al.: An origin for short gamma-ray bursts unassociated with current star formation. Nature 438, 994 (2005)

    Article  ADS  Google Scholar 

  4. Churazov, E., Sazonov, S., Sunyaev, R., Revnivtsev, M.: arXiv astro-ph/0608252 (2006)

  5. Crider, A., Liang, E.P., Smith, I.A., et al.: Evolution of the low-energy photon spectral in gamma-ray bursts. Astrophys. J. Lett. 479, L39 (1997)

    Article  ADS  Google Scholar 

  6. D’Avanzo, P: Short gamma-ray bursts: a review. J. High Energy Astrophys. 7, 73 (2015)

    Article  ADS  Google Scholar 

  7. Ghirlanda, G., Bernardini, M.G., Calderone, G., D’Avanzo, P.: Are short gamma ray bursts similar to long ones?. J. High Energy Astrophys. 7, 81 (2015)

    Article  ADS  Google Scholar 

  8. Ghirlanda, G., Celotti, A., Ghisellini, G.: Extremely hard GRB spectra prune down the forest of emission models. Astron. Astrophys. 406, 879 (2003)

    Article  ADS  Google Scholar 

  9. Ghirlanda, G., Ghisellini, G., Lazzati, D.: The collimation-corrected gamma-ray burst energies correlate with the peak energy of their nuF(nu) spectrum. Astrophys. J. 616, 331 (2004)

    Article  ADS  Google Scholar 

  10. Godet, O., Nasser, G., Atteia, J.-L., et al.: In: Proceedings of the SPIE, vol. 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 914424 (2014)

  11. Godet, O., Sizun, P., Barret, D., et al.: Monte-Carlo simulations of the background of the coded-mask camera for x- and gamma-rays on-board the Chinese-French GRB mission SVOM. Nucl. Inst. Methods Phys. Res. A 603, 365 (2009)

    Article  ADS  Google Scholar 

  12. Gruber, D., Goldstein, A., Weller von Ahlefeld, V., et al.: The Fermi GBM gamma-ray burst spectral catalog: four years of data. Astrophys. J. Suppl. Ser. 211, 12 (2014)

    Article  ADS  Google Scholar 

  13. Gruber, D.E., Matteson, J.L., Peterson, L.E., Jung, G.V.: The spectrum of diffuse cosmic hard x-rays measured with HEAO 1. Astrophys. J. 520, 124 (1999)

    Article  ADS  Google Scholar 

  14. Guiriec, S., Connaughton, V., Briggs, M.S., et al.: Detection of a thermal spectral component in the prompt emission of GRB 100724B. Astrophys. J. Lett. 727, L33 (2011)

    Article  ADS  Google Scholar 

  15. Guiriec, S., Kouveliotou, C., Daigne, F., et al.: Toward a better understanding of the GRB phenomenon: a new model for GRB prompt emission and its effects on the new L i N T- E p e a k, i r e s t, N T relation. Astrophys. J. 807, 148 (2015)

    Article  ADS  Google Scholar 

  16. Heussaff, V., Atteia, J.-L., Zolnierowski, Y.: The E p e a k - E i s o relation revisited with Fermi GRBs. Resolving a long-standing debate?. Astron. Astrophys. 557, A100 (2013)

    Article  Google Scholar 

  17. Kaneko, Y., Preece, R.D., Briggs, M.S., et al.: The complete spectral catalog of bright BATSE gamma-ray bursts. Astrophys. J. Supp. Ser. 166, 298 (2006)

    Article  ADS  Google Scholar 

  18. Katz, J.I.: Low-frequency spectra of gamma-ray bursts. Astrophys. J. Lett. 432, L107 (1994)

    Article  ADS  Google Scholar 

  19. Lacombe, K., Pons, R., Amoros, C., et al.: In: Proceedings of the SPIE, Vol. 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 914451 (2014)

  20. Lazzati, D., Ramirez-Ruiz, E., Ghisellini, G.: Possible detection of hard x-ray afterglows of short gamma-ray bursts. Astron. Astrophys. 379, L39 (2001)

    Article  ADS  Google Scholar 

  21. Le Provost, H., Schanne, S., Flouzat, C., et al.: arXiv:1412.0481 (2014)

  22. Meegan, C., Lichti, G., Bhat, P.N., et al.: The Fermi Gamma-ray burst monitor. Astrophys. J. 702, 791 (2009)

    Article  ADS  Google Scholar 

  23. Moretti, A., Pagani, C., Cusumano, G., et al.: A new measurement of the cosmic x-ray background. Astron. Astrophys. 493, 501 (2009)

    Article  ADS  Google Scholar 

  24. Norris, J.P., Bonnell, J.T.: Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266 (2006)

    Article  ADS  Google Scholar 

  25. Preece, R.D., Briggs, M.S., Giblin, T.W., et al.: On the consistency of gamma-ray burst spectral indices with the synchrotron shock model. Astrophys. J. 581, 1248 (2002)

    Article  ADS  Google Scholar 

  26. Preece, R.D., Briggs, M. S., Mallozzi, R.S., et al.: The synchrotron shock model confronts a “Line of Death” in the BATSE gamma-ray burst data. Astrophys. J. Lett. 506, L23 (1998)

    Article  ADS  Google Scholar 

  27. Sazonov, S., Churazov, E., Sunyaev, R., Revnivtsev, M.: Hard x-ray emission of the Earth’s atmosphere: Monte Carlo simulations. MNRAS 377, 1726 (2007)

    Article  ADS  Google Scholar 

  28. Schanne, S., Cordier, B., Atteia, J.-L., et al.: arXiv:1508.05851 (2015)

  29. Schanne, S., Le Provost, H., Kestener, P., et al.: arXiv:1411.7810 (2014)

  30. Villasenor, J.S., Lamb, D.Q., Ricker, G.R., et al.: Discovery of the short gamma-ray burst GRB 050709. Nature 437, 855 (2005)

    Article  ADS  Google Scholar 

  31. Wei, J., Cordier, B., Antier, S., et al.: arXiv:1610.06892 (2016)

  32. Yonetoku, D., Murakami, T., Nakamura, T., et al.: Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys. J. 609, 935 (2004)

    Article  ADS  Google Scholar 

  33. Yu, H.-F., van Eerten, H.J., Greiner, J., et al.: Astron. Astrophys. 583, A129 (2015)

    Article  Google Scholar 

  34. Zhao, D., Cordier, B., Sizun, P., et al.: Exp. Astron. 34, 705 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for the valuable comments and suggestions. We thank V. Connaghton for helpful discussions. This work has been carried out thanks to the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French government program managed by the ANR. YWD acknowledges the Youth Innovation Promotion Association CAS under Grant NO. 2014009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Bernardini.

Appendix: Spectral models used in the analysis

Appendix: Spectral models used in the analysis

  • Power-law model (PL):

    $$ {\mathrm{N}(\mathrm{E})=\mathrm{K} \mathrm{E}^{-\alpha}} $$
    (1)

    K = normalization [ph cm−2 s−1 keV−1 at 1 keV], α = photon index.

  • Comptonised model (cutPL):

    $$ {\mathrm{N}(\mathrm{E})=\mathrm{K} \mathrm{E}^{-\alpha} \mathrm{e}^{\left( -\frac{\mathrm{E}}{ \mathrm{E}_{\circ}}\right)}} $$
    (2)

    K = normalization [ph cm−2 s−1 keV−1 at 1 keV], α = photon index, E = e-folding energy [keV].

  • Band model (Band):

    $$\begin{array}{@{}rcl@{}} {\mathrm{N}(\mathrm{E})=\mathrm{K}} \left\{\begin{array}{ll} {\left( \frac{\mathrm{E}}{100~\text{keV}}\right)^{-\alpha} \mathrm{e}^{\left( -\frac{\mathrm{E}}{\mathrm{E}_{\circ}}\right)}} & {\mathrm{E}\leqslant \mathrm{E}_{\text{br}}} \\ {\left[\frac{\mathrm{E}_{\text{br}}}{100~\text{keV}}\right]^{(\beta-\alpha)} \left( \frac{\mathrm{E}}{100~\text{keV}}\right)^{-\beta} \mathrm{e}^{-(\beta-\alpha)}} & {\mathrm{E}> \mathrm{E}_{\text{br}}} \end{array}\right. \end{array} $$
    (3)

    K = normalization [ph cm−2 s−1 keV−1], α = low-energy photon index, β = high-energy photon index, E = e-folding energy [keV], Ebr = (βα)E. The cutPL function is a subset of the Band function, obtained in the limit β.

  • Black-body model (BB):

    $$ {\mathrm{N}(\mathrm{E})= \mathrm{K} \frac{\mathrm{E}^{2}}{(\text{kT})^{4} \left[{\exp}(\mathrm{E}/(\text{kT}))-1\right]}} $$
    (4)

    K = normalization [ph keV cm−2 s−1], kT = temperature [keV].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, M.G., Xie, F., Sizun, P. et al. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM. Exp Astron 44, 113–127 (2017). https://doi.org/10.1007/s10686-017-9551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-017-9551-4

Keywords

Navigation